Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1975 Apr;72(4):1240–1244. doi: 10.1073/pnas.72.4.1240

Control of the synthesis of a single enzyme by multiple regulatory circuits in Neurospora crassa.

M A Hanson, G A Marzluf
PMCID: PMC432507  PMID: 124058

Abstract

Neurospora crassa synthesizes and secretes an extracellular protease into its growth medium when an exogenous protein serves as its principal source of sulfur, nitrogen, or carbon. The enzymes produced under these three growth conditions have been compared by a number of criteria. The results indicate that the same extracellular protease with a molecular weight of 31,000 is synthesized during the three different metabolic conditions. A regulatory mutant, which lacks a positive signal required for the synthesis of a family of related enzymes for sulfur metabolism, cannot synthesize the protease in response to a limitation for sulfur; yet, this same mutant is capable of producing the enzyme when it is limited for either nitrogen or carbon. A second regulatory mutant, defective in the control of nitrogen metabolism, fails to synthesize the protease only when it is limited for nitrogen. The evidence suggests that a single structural gene for this extracellular protease exists and that it is regulated in a complex fashion such that control signals arising from any one of the three distinct regulatory circuits can activate it for expression. A model is proposed for complex regulation of the synthesis of this enzyme.

Full text

PDF
1242

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Burton E. G., Metzenberg R. L. Novel mutation causing derepression of several enzymes of sulfur metabolism in Neurospora crassa. J Bacteriol. 1972 Jan;109(1):140–151. doi: 10.1128/jb.109.1.140-151.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cohen B. L. The neutral and alkaline proteases of Aspergillus nidulans. J Gen Microbiol. 1973 Aug;77(2):521–528. doi: 10.1099/00221287-77-2-521. [DOI] [PubMed] [Google Scholar]
  3. Drucker H. Regulation of exocellular proteases in Neurospora crassa: induction and repression of enzyme synthesis. J Bacteriol. 1972 Jun;110(3):1041–1049. doi: 10.1128/jb.110.3.1041-1049.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Giles N. H., Partridge C. W., Ahmed S. I., Case M. E. The occurrence of two dehydroquinases in Neurospora crassa, one constitutive and one inducible. Proc Natl Acad Sci U S A. 1967 Nov;58(5):1930–1937. doi: 10.1073/pnas.58.5.1930. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hanson M. A., Marzluf G. A. Regulation of a sulfur-controlled protease in Neurospora crassa. J Bacteriol. 1973 Nov;116(2):785–789. doi: 10.1128/jb.116.2.785-789.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hua S. S., Markovitz A. Multiple regulation of the galactose operon-genetic evidence for a distinct site in the galactose operon that responds to capR gene regulation in Escherichia coli K-12. Proc Natl Acad Sci U S A. 1974 Feb;71(2):507–511. doi: 10.1073/pnas.71.2.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lehman J. F., Gleason M. K., Ahlgren S. K., Metzenberg R. L. Regulation of phosphate metabolism in Neurospora crassa. Characterization of regulatory mutants. Genetics. 1973 Sep;75(1):61–73. doi: 10.1093/genetics/75.1.61. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. MATILE P. INTRAZELLULAERE LOKALISATION PROTEOLYTISCHER ENZYME VON NEUROSPORA CRASSA. I. FUNKTION UND SUBZELLULAERE VERTEILUNG PROTEOLYTISCHER ENZYME. Z Zellforsch Mikrosk Anat. 1965 Mar 16;65:884–896. [PubMed] [Google Scholar]
  9. Marzluf G. A. Genetic and metabolic control of sulfate metabolism in Neurospora crassa: a specific permease for choline-O-sulfate. Biochem Genet. 1972 Dec;7(3):219–233. doi: 10.1007/BF00484820. [DOI] [PubMed] [Google Scholar]
  10. Marzluf G. A., Metzenberg R. L. Positive control by the cys-3 locus in regulation of sulfur metabolism in Neurospora. J Mol Biol. 1968 Apr 28;33(2):423–437. doi: 10.1016/0022-2836(68)90199-x. [DOI] [PubMed] [Google Scholar]
  11. Metzenberg R. L. Genetic regulatory systems in Neurospora. Annu Rev Genet. 1972;6:111–132. doi: 10.1146/annurev.ge.06.120172.000551. [DOI] [PubMed] [Google Scholar]
  12. Pastan I., Perlman R. Cyclic adenosine monophosphate in bacteria. Science. 1970 Jul 24;169(3943):339–344. doi: 10.1126/science.169.3943.339. [DOI] [PubMed] [Google Scholar]
  13. Polacco J. C., Gross S. R. The product of the leu-3 cistron as a regulatory element for the production of the leucine biosynthetic enzymes of Neurospora. Genetics. 1973 Jul;74(3):443–459. doi: 10.1093/genetics/74.3.443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Tyler B., Deleo A. B., Magasanik B. Activation of transcription of hut DNA by glutamine synthetase. Proc Natl Acad Sci U S A. 1974 Jan;71(1):225–229. doi: 10.1073/pnas.71.1.225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Valone J. A., Jr, Case M. E., Giles N. H. Constitutive mutants in a regulatory gene exerting positive control of quinic acid catabolism in Neurospora crassa. Proc Natl Acad Sci U S A. 1971 Jul;68(7):1555–1559. doi: 10.1073/pnas.68.7.1555. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES