Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1975 Apr;72(4):1510–1514. doi: 10.1073/pnas.72.4.1510

Localized Derepression on the Human Inactive X Chromosone in Mouse-Human Cell Hybrids.

B Kahan, R DeMars
PMCID: PMC432566  PMID: 1055421

Abstract

Evidence for derepression of the gene for hypoxanthine phosphoribosyltransferase (HPRT; IMP: pyrophosphate phosphoribosyltransferase, EC 2.4.2.8) on the human inactive X chromosome was obtained in hybrids of mouse and human cells. The mouse cells lacked HPRT and were also deficient in adenine phosphoribosyltransferase (APRT; AMP: pyrophosphate phosphoribosyltransferase; EC2.4.2.7). The human female fibroblasts were HPRT-deficient as a consequence of a mutation on the active X but contained a normal HPRT gene on the inactive X. The two human X chromosomes were further distinguished by differences in morphology: the inactive X was morphologically normal while the active X included most of the long arm of autosome no. 1 translocated to the distal end of the X long arm. Forty-one hybrid clones were first isolated by selection for the presence of APRT; when these clones were selected for HPRT, six of them yielded derivatives having human HPRT with incidences of about 1 in 10-6 APRT-selected hybrid cells. The HPRT-positive derivatives contained a normal-appearing X chromosome indistinguishable from the inactive X of the parental human fibroblasts. The active X with the translocation was not found in any of the HPRT-positive hybrid cells. Human phosphoglycerokinase (ATP:3-phospho-D-glycerate 1-phosphotransferase. EC 2.7.2.3) and glucose-6-phosphate dehydrogenase (D-glucose 6-phosphate: NADP 1-oxidoreductase, EC 1.1.1.49), which are specified by X-chromosomal loci, were not detected in the hybrids expressing HPRT even though they contained an apparently intact X chromosome. The observations are most simply explained by the infrequent, stable derepression of inactive X chromosome segments that include the HPRT locus but not the phosphoglycerokinase and glucose-6-phosphate dehydrogenase loci.

Full text

PDF
1513

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albertini R. J., DeMars R. Somatic cell mutation. Detection and quantification of x-ray-induced mutation in cultured, diploid human fibroblasts. Mutat Res. 1973 May;18(2):199–224. doi: 10.1016/0027-5107(73)90037-7. [DOI] [PubMed] [Google Scholar]
  2. Brown S. W., Chandra H. S. Inactivation system of the mammalian X chromosome. Proc Natl Acad Sci U S A. 1973 Jan;70(1):195–199. doi: 10.1073/pnas.70.1.195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Caspersson T., Zech L., Johansson C., Modest E. J. Identification of human chromosomes by DNA-binding fluorescent agents. Chromosoma. 1970;30(2):215–227. doi: 10.1007/BF00282002. [DOI] [PubMed] [Google Scholar]
  4. Cattanach B. M., Pollard C. E., Perez J. N. Controlling elements in the mouse X-chromosome. I. Interaction with the X-linked genes. Genet Res. 1969 Dec;14(3):223–235. doi: 10.1017/s0016672300002068. [DOI] [PubMed] [Google Scholar]
  5. Cattanach B. M. Position effect variegation in the mouse. Genet Res. 1974 Jun;23(3):291–306. doi: 10.1017/s0016672300014932. [DOI] [PubMed] [Google Scholar]
  6. Colten H. R., Parkman R. Biosynthesis of C4 (fourth component of complement) by hybrids of C4-deficient guinea pig cells and HeLa cells. Science. 1972 Jun 2;176(4038):1029–1031. doi: 10.1126/science.176.4038.1029. [DOI] [PubMed] [Google Scholar]
  7. Cooper D. W. Directed genetic change model for X chromosome inactivation in eutherian mammals. Nature. 1971 Apr 2;230(5292):292–294. doi: 10.1038/230292a0. [DOI] [PubMed] [Google Scholar]
  8. Darlington G. J., Bernard H. P., Ruddle F. H. Human serum albumin phenotype activation in mouse hepatoma--human leukocyte cell hybrids. Science. 1974 Sep 6;185(4154):859–862. doi: 10.1126/science.185.4154.859. [DOI] [PubMed] [Google Scholar]
  9. DeMars R., Held K. R. The spontaneous azaguanine-resistant mutants of diploid human fibroblasts. Humangenetik. 1972;16(1):87–110. doi: 10.1007/BF00393992. [DOI] [PubMed] [Google Scholar]
  10. DeMars R. The single-active-X: functional differentiation at the chromosome level. Natl Cancer Inst Monogr. 1967 Sep;26:327–351. [PubMed] [Google Scholar]
  11. Eicher E. M. X-autosome translocations in the mouse: total inactivation versus partial inactivation of the X chromosome. Adv Genet. 1970;15:175–259. [PubMed] [Google Scholar]
  12. Gartler S. M., Liskay R. M., Campbell B. K., Sparkes R., Gant N. Evidence for two functional X chromosomes in human oocytes. Cell Differ. 1972 Oct;1(4):215–218. doi: 10.1016/0045-6039(72)90039-5. [DOI] [PubMed] [Google Scholar]
  13. Grumbach M. M., Morishima A., Taylor J. H. HUMAN SEX CHROMOSOME ABNORMALITIES IN RELATION TO DNA REPLICATION AND HETEROCHROMATINIZATION. Proc Natl Acad Sci U S A. 1963 May;49(5):581–589. doi: 10.1073/pnas.49.5.581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. HAM R. G. An improved nutrient solution for diploid Chinese hamster and human cell lines. Exp Cell Res. 1963 Feb;29:515–526. doi: 10.1016/s0014-4827(63)80014-2. [DOI] [PubMed] [Google Scholar]
  15. Levy N. L., Synderman R., Ladda R. L., Lieberman R. Cytogenetic engineering in vivo: restoration of biologic complement activity to C5-deficient mice by intravenous inoculation of hybrid cells. Proc Natl Acad Sci U S A. 1973 Nov;70(11):3125–3129. doi: 10.1073/pnas.70.11.3125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Meera Khan P. Enzyme electrophoresis on cellulose acetate gel: zymogram patterns in mgh-mouse and man--Chinese hamster somatic cell hybrids. Arch Biochem Biophys. 1971 Aug;145(2):470–483. doi: 10.1016/s0003-9861(71)80007-3. [DOI] [PubMed] [Google Scholar]
  17. Migeon B. R., Norum R. A., Corsaro C. M. Isolation and analysis of somatic hybrids derived from two human diploid cells. Proc Natl Acad Sci U S A. 1974 Mar;71(3):937–941. doi: 10.1073/pnas.71.3.937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Migeon B. R. Stability of X chromosomal inactivation in human somatic cells. Nature. 1972 Sep 8;239(5367):87–89. doi: 10.1038/239087a0. [DOI] [PubMed] [Google Scholar]
  19. Peterson J. A., Weiss M. C. Expression of differentiated functions in hepatoma cell hybrids: induction of mouse albumin production in rat hepatoma-mouse fibroblast hybrids. Proc Natl Acad Sci U S A. 1972 Mar;69(3):571–575. doi: 10.1073/pnas.69.3.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. RUSSELL L. B. Mammalian X-chromosome action: inactivation limited in spread and region of origin. Science. 1963 May 31;140(3570):976–978. doi: 10.1126/science.140.3570.976. [DOI] [PubMed] [Google Scholar]
  21. Sato K., Slesinski R. S., Littlefield J. W. Chemical mutagenesis at the phosphoribosyltransferase locus in cultured human lymphoblasts. Proc Natl Acad Sci U S A. 1972 May;69(5):1244–1248. doi: 10.1073/pnas.69.5.1244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Silagi S., Darlington G., Bruce S. A. Hybridization of two biochemically marked human cell lines. Proc Natl Acad Sci U S A. 1969 Apr;62(4):1085–1092. doi: 10.1073/pnas.62.4.1085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Siniscalco M., Klinger H. P., Eagle H., Koprowski H., Fujimoto W. Y., Seegmiller J. E. Evidence for intergenic complementation in hybrid cells derived from two human diploid strains each carrying an X-linked mutation. Proc Natl Acad Sci U S A. 1969 Mar;62(3):793–799. doi: 10.1073/pnas.62.3.793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Tischfield J. A., Ruddle F. H. Assignment of the gene for adenine phosphoribosyltransferase to human chromosome 16 by mouse-human somatic cell hybridization. Proc Natl Acad Sci U S A. 1974 Jan;71(1):45–49. doi: 10.1073/pnas.71.1.45. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES