Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1975 Jun;72(6):1997–2001. doi: 10.1073/pnas.72.6.1997

Endonucleolytic incision of x-irradiated deoxyribonucleic acid by extracts of Escherichia coli.

G F Strniste, S S Wallace
PMCID: PMC432679  PMID: 1094450

Abstract

An enconuclease activity that reacts with x-irradiated DNA is present in extracts of E. coli. By using centrifugal methods to monitor the conversion of the supercoiled, circular double-stranded DNA for phage phi-x-174 (replicative form) or PM2 to the relaxed circular form it was possible to quantitate the rate of radiation induced endonuclease-sensitive sites in the DNA. For every single-strand break induced by x-rays under aerobic irradiation conditions, there is approximately one induced site sensitive to this endonuclease activity. Under irradiation conditions (addition OF Potassium iodide) that dramatically reduce rates of single-strand breaks and "alkalilabile" lesions, the number of endonuclease-sensitive sites relative to single-strand breaks increase approximatley 4-fold. This nuclease is present in several strains of E. coli B and K12, including mutants deficient in DNA polymerase I, recombination gene products (rec mutants), ultraviolet light incision enzyme (uvr A mutant), and endonuclease II. It is suggested that this endonuclease may be involved in an excision repair process for damages incurred in DNA by ionizing radiation.

Full text

PDF
1999

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Achey P. M., Billen D., Beltranena H. P. Single-strand breaks in gamma-irradiated phi-X174 DNA induced by exposure to alkali. Int J Radiat Biol Relat Stud Phys Chem Med. 1971;20(5):501–504. doi: 10.1080/09553007114551411. [DOI] [PubMed] [Google Scholar]
  2. Blok J., Luthjens L. H., Roos A. L. The radiosensitivity of bacteriophage DNA in aqueous solution. Radiat Res. 1967 Mar;30(3):468–482. [PubMed] [Google Scholar]
  3. Boyce R. P., Tepper M. X-ray-induced single-strand breaks and joining of broken strands in superinfecting lambda DNA in Escherichia coli lysogenic for lambda. Virology. 1968 Feb;34(2):344–351. doi: 10.1016/0042-6822(68)90245-6. [DOI] [PubMed] [Google Scholar]
  4. Braun A., Grossman L. An endonuclease from Escherichia coli that acts preferentially on UV-irradiated DNA and is absent from the uvrA and uvrB mutants. Proc Natl Acad Sci U S A. 1974 May;71(5):1838–1842. doi: 10.1073/pnas.71.5.1838. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brent T. P. A human endonuclease activity for gamma-irradiated DNA. Biophys J. 1973 Apr;13(4):399–401. doi: 10.1016/S0006-3495(73)85993-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Christensen R. C., Tobias C. A., Taylor W. D. Heavy-ion-induced single- and double-strand breaks in phiX-174 replicative form DNA. Int J Radiat Biol Relat Stud Phys Chem Med. 1972 Nov;22(5):457–477. doi: 10.1080/09553007214551351. [DOI] [PubMed] [Google Scholar]
  7. Dewitt S K, Adelberg E A. The Occurrence of a Genetic Transposition in a Strain of Escherichia Coli. Genetics. 1962 May;47(5):577–585. doi: 10.1093/genetics/47.5.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Emmerson P. T. Recombination deficient mutants of Escherichia coli K12 that map between thy A and argA. Genetics. 1968 Sep;60(1):19–30. doi: 10.1093/genetics/60.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Espejo R. T., Canelo E. S., Sinsheimer R. L. Replication of bacteriophage PM2 deoxyribonucleic acid: a closed circular double-stranded molecule. J Mol Biol. 1971 Mar 28;56(3):597–621. doi: 10.1016/0022-2836(71)90404-9. [DOI] [PubMed] [Google Scholar]
  10. Freifelder D., Donta S. T., Goldstein R. X-ray inactivation of bacteriophages: role of O 2 -dependent damage in single- and double-strand DNA phages. Virology. 1972 Nov;50(2):516–519. doi: 10.1016/0042-6822(72)90402-3. [DOI] [PubMed] [Google Scholar]
  11. Friedberg E. C., Hadi S. M., Goldthwait D. A. Endonuclease II of Escherichia coli. II. Enzyme properties and studies on the degradation of alkylated and native deoxyribonucleic acid. J Biol Chem. 1969 Nov 10;244(21):5879–5889. [PubMed] [Google Scholar]
  12. GOA J. A micro biuret method for protein determination; determination of total protein in cerebrospinal fluid. Scand J Clin Lab Invest. 1953;5(3):218–222. doi: 10.3109/00365515309094189. [DOI] [PubMed] [Google Scholar]
  13. HILL R. F., SIMSON E. A study of radiosensitive and radioresistant mutants of Escherichia coli strain B. J Gen Microbiol. 1961 Jan;24:1–14. doi: 10.1099/00221287-24-1-1. [DOI] [PubMed] [Google Scholar]
  14. Hariharan P. V., Cerutti P. A. Formation and repair of gamma-ray induced thymine damage in Micrococcus radiodurans. J Mol Biol. 1972 Apr 28;66(1):65–81. doi: 10.1016/s0022-2836(72)80006-8. [DOI] [PubMed] [Google Scholar]
  15. Howard-Flanders P., Theriot L. Mutants of Escherichia coli K-12 defective in DNA repair and in genetic recombination. Genetics. 1966 Jun;53(6):1137–1150. doi: 10.1093/genetics/53.6.1137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jacobs A., Bopp A., Hagen U. In vitro repair of single-strand breaks in -irradiated DNA by polynucleotide ligase. Int J Radiat Biol Relat Stud Phys Chem Med. 1972 Nov;22(5):431–435. doi: 10.1080/09553007214551321. [DOI] [PubMed] [Google Scholar]
  17. Kapp D. S., Smith K. C. Repair of radiation-induced damage in Escherichia coli. II. Effect of rec and uvr mutations on radiosensitivity, and repair of x-ray-induced single-strand breaks in deoxyribonucleic acid. J Bacteriol. 1970 Jul;103(1):49–54. doi: 10.1128/jb.103.1.49-54.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kato T., Kondo S. Two types of x-ray-sensitive mutants of Escherichia coli B: their phenotypic characters compared with UV-sensitive mutants. Mutat Res. 1967 May-Jun;4(3):253–263. doi: 10.1016/0027-5107(67)90020-6. [DOI] [PubMed] [Google Scholar]
  19. McGrath R. A., Williams R. W. Reconstruction in vivo of irradiated Escherichia coli deoxyribonucleic acid; the rejoining of broken pieces. Nature. 1966 Oct 29;212(5061):534–535. doi: 10.1038/212534a0. [DOI] [PubMed] [Google Scholar]
  20. Monk M., Peacey M., Gross J. D. Repair of damage induced by ultraviolet light in DNA polymerase-defective Escherichia coli cells. J Mol Biol. 1971 Jun 14;58(2):623–630. doi: 10.1016/0022-2836(71)90376-7. [DOI] [PubMed] [Google Scholar]
  21. Ostrander D. A., Gray H. B., Jr Sedimentation and intrinsic viscosity behavior of PM2 bacteriophage DNA in alkaline solution. Biopolymers. 1973 Jun;12(6):1387–1419. doi: 10.1002/bip.1973.360120614. [DOI] [PubMed] [Google Scholar]
  22. Paterson M. C., Roozen K. J., Setlow R. B. -Ray-induced chain breaks and alkali-labile bonds in lambda d upsilon DNA of Escherichia coli minicells irradiated under aerobic and anoxic conditions. Int J Radiat Biol Relat Stud Phys Chem Med. 1973 May;23(5):495–508. doi: 10.1080/09553007314550571. [DOI] [PubMed] [Google Scholar]
  23. Paterson M. C., Setlow R. B. Endonucleolytic activity from Micrococcus luteus that acts on -ray-induced damage in plasmid DNA of Escherichia coli minicells. Proc Natl Acad Sci U S A. 1972 Oct;69(10):2927–2931. doi: 10.1073/pnas.69.10.2927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Pouwels P. H., Knijnenburg C. M., van Rotterdam J., Cohen J. A. Structure of the replicative form of bacteriphage phi X174. VI. Studies on alkali-denatured double-stranded phi X DNA. J Mol Biol. 1968 Mar 14;32(2):169–182. doi: 10.1016/0022-2836(68)90002-8. [DOI] [PubMed] [Google Scholar]
  25. Setlow R. B., Carrier W. L. Endonuclease activity toward DNA irradiated in vitro by gamma rays. Nat New Biol. 1973 Feb 7;241(110):170–172. doi: 10.1038/newbio241170a0. [DOI] [PubMed] [Google Scholar]
  26. Stephan G. Repair of damage induced in phi chi 174 RF-DNA by 60Co-gamma-rays. Int J Radiat Biol Relat Stud Phys Chem Med. 1973 Jun;23(6):533–542. doi: 10.1080/09553007314550641. [DOI] [PubMed] [Google Scholar]
  27. Taylor W. D., Ginoza W. Correlation of gamma-ray inactivation and strand scission in the replicative form of phi-X174 bacteriophage DNA. Proc Natl Acad Sci U S A. 1967 Oct;58(4):1753–1757. doi: 10.1073/pnas.58.4.1753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Town C. D., Smith K. C., Kaplan H. S. DNA polymerase required for rapid repair of x-ray--induced DNA strand breaks in vivo. Science. 1971 May 21;172(3985):851–854. doi: 10.1126/science.172.3985.851. [DOI] [PubMed] [Google Scholar]
  29. Verly W. G., Paquette Y. An endonuclease for depurinated DNA in Escherichia coli B. Can J Biochem. 1972 Feb;50(2):217–224. doi: 10.1139/o72-029. [DOI] [PubMed] [Google Scholar]
  30. Wallace S. S., Melamede R. J. Host- and phage-mediated repair of radiation damage in bacteriophage T4. J Virol. 1972 Dec;10(6):1159–1169. doi: 10.1128/jvi.10.6.1159-1169.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wilkins R. J. Does Escherichia coli possess a DNA excision repair system for gamma-ray damage? Nat New Biol. 1973 Aug 29;244(139):269–271. doi: 10.1038/newbio244269a0. [DOI] [PubMed] [Google Scholar]
  32. Wilkins R. J. Endonuclease-sensitive sites in the DNA of irradiated bacteria: a rapid and sensitive assay. Biochim Biophys Acta. 1973 Jun 8;312(1):33–37. doi: 10.1016/0005-2787(73)90049-x. [DOI] [PubMed] [Google Scholar]
  33. van der Schans G. P., Bleichrodt J. F., Blok J. Contribution of various types of damage to inactivation of a biologically-active double-stranded circular DNA by gamma-radiation. Int J Radiat Biol Relat Stud Phys Chem Med. 1973 Feb;23(2):133–150. doi: 10.1080/09553007314550151. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES