Abstract
The role of SH groups in opiate-receptor interactions has been further examined. In activation by N-ethylmaleimide of sterospecific opiate binding by rat brain membrane fractions follows pseudo-first order kinetics and exhibits strong temperature dependence. The kinetics indicate that alkylation of a single SH group suffices to block opiate binding. Considerable protection from SH group inactivation is observed when treatment with N-ethylmaleimide is carried out in the presence of an opiate or an antagonist, suggesting close proximity of the SH group to the opiate binding site. The rate of inactivation of receptor binding by N-ethylmaleimide is markedly slower in buffers containing 100 mM NaCl (t1/2 equals 30 plus or minus 1.4 min) than in sodium-free buffers (t1/2 equals 10 plus or minus 1.0 min). Since the rate of alkylation of model SH compounds is unaffected by sodium ions, this protection seems best explained by a conformational change in the receptors that renders the SH groups less accessible to alkylation. The rate of inactivation is not affected by K+, Rb+, or Cs+ and only slightly by Li+. This cation specificity as well as the concentration-response to Na+ are remarkably similar to those previously shown to lead to increased antagonist and decreased agonist binding. We suggest that the same conformational change is involved in the two phenomena.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Carter J. R., Fox C. F., Kennedy E. P. Interaction of sugars with the membrane protein component of the lactose transport system of Escherichia coli. Proc Natl Acad Sci U S A. 1968 Jun;60(2):725–732. doi: 10.1073/pnas.60.2.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldstein A., Lowney L. I., Pal B. K. Stereospecific and nonspecific interactions of the morphine congener levorphanol in subcellular fractions of mouse brain. Proc Natl Acad Sci U S A. 1971 Aug;68(8):1742–1747. doi: 10.1073/pnas.68.8.1742. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hiller J. M., Pearson J., Simon E. J. Distribution of stereospecific binding of the potent narcotic analgesic etorphine in the human brain: predominance in the limbic system. Res Commun Chem Pathol Pharmacol. 1973 Nov;6(3):1052–1062. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Levison M. E., Josephson A. S., Kirschenbaum D. M. Reduction of biological substances by water-soluble phosphines: gamma-globulin (IgG). Experientia. 1969 Feb 15;25(2):126–127. doi: 10.1007/BF01899076. [DOI] [PubMed] [Google Scholar]
- Pert C. B., Pasternak G., Snyder S. H. Opiate agonists and antagonists discriminated by receptor binding in brain. Science. 1973 Dec 28;182(4119):1359–1361. doi: 10.1126/science.182.4119.1359. [DOI] [PubMed] [Google Scholar]
- Pert C. B., Snyder S. H. Opiate receptor: demonstration in nervous tissue. Science. 1973 Mar 9;179(4077):1011–1014. doi: 10.1126/science.179.4077.1011. [DOI] [PubMed] [Google Scholar]
- Simon E. J., Hiller J. M., Edelman I. Stereospecific binding of the potent narcotic analgesic (3H) Etorphine to rat-brain homogenate. Proc Natl Acad Sci U S A. 1973 Jul;70(7):1947–1949. doi: 10.1073/pnas.70.7.1947. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simon E. J., Hiller J. M., Groth J., Edelman I. Further properties of stereospecific opiate binding sites in rat brain: on the nature of the sodium effect. J Pharmacol Exp Ther. 1975 Mar;192(3):531–537. [PubMed] [Google Scholar]
- Terenius L. Stereospecific interaction between narcotic analgesics and a synaptic plasm a membrane fraction of rat cerebral cortex. Acta Pharmacol Toxicol (Copenh) 1973;32(3):317–320. doi: 10.1111/j.1600-0773.1973.tb01477.x. [DOI] [PubMed] [Google Scholar]