Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1975 Jul;72(7):2621–2625. doi: 10.1073/pnas.72.7.2621

Sulfonamide resistance mechanism in Escherichia coli: R plasmids can determine sulfonamide-resistant dihydropteroate synthases.

E M Wise Jr, M M Abou-Donia
PMCID: PMC432821  PMID: 1101260

Abstract

Several natural isolate E. coli strains highly resistant to sulfonamides and antibiotics are shown to contain a sulfonamide-resistant dihydropteroate synthase (2-amino-4-hydroxy-6-hydroxymethyl-7,8-dihydropteridine-diphosphate:4-aminobenzoate 2-amino-4-hydroxydihydropteridine-6-methenyltransferase, EC 2.5.1.15) in addition to the normal sensitive enzyme. The resistant dihydropteroate synthases examined are determined by an R plasmid and are smaller and less heat stable than the normal sulfonamide-sensitive enzyme. One synthase resistant to any sulfonamide tested, and to sulfanilic and arsanilic acids, was still inhibited by several non-sulfonamide analogs of p-aminobenzoate. Citrobacter and Klebsiella pneumoniae strains also show similar mechanisms of sulfonamide resistance.

Full text

PDF
2623

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amyes S. G., Smith J. T. R-factor trimethoprim resistance mechanism: an insusceptible target site. Biochem Biophys Res Commun. 1974 May 20;58(2):412–418. doi: 10.1016/0006-291x(74)90380-5. [DOI] [PubMed] [Google Scholar]
  2. Andrews P. The gel-filtration behaviour of proteins related to their molecular weights over a wide range. Biochem J. 1965 Sep;96(3):595–606. doi: 10.1042/bj0960595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bauer A. W., Kirby W. M., Sherris J. C., Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol. 1966 Apr;45(4):493–496. [PubMed] [Google Scholar]
  4. Benveniste R., Davies J. Mechanisms of antibiotic resistance in bacteria. Annu Rev Biochem. 1973;42:471–506. doi: 10.1146/annurev.bi.42.070173.002351. [DOI] [PubMed] [Google Scholar]
  5. Burchall J. J., Hitchings G. H. Inhibitor binding analysis of dihydrofolate reductases from various species. Mol Pharmacol. 1965 Sep;1(2):126–136. [PubMed] [Google Scholar]
  6. Bushby S. R. Combined antibacterial action in vitro of trimethoprim and sulphonamides. The in vitro nature of synergy. Postgrad Med J. 1969 Nov;45(Suppl):10–18. [PubMed] [Google Scholar]
  7. Clowes R. C. Molecular structure of bacterial plasmids. Bacteriol Rev. 1972 Sep;36(3):361–405. doi: 10.1128/br.36.3.361-405.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Datta N., Hedges R. W. Host ranges of R factors. J Gen Microbiol. 1972 May;70(3):453–460. doi: 10.1099/00221287-70-3-453. [DOI] [PubMed] [Google Scholar]
  9. Datta N., Hedges R. W., Shaw E. J., Sykes R. B., Richmond M. H. Properties of an R factor from Pseudomonas aeruginosa. J Bacteriol. 1971 Dec;108(3):1244–1249. doi: 10.1128/jb.108.3.1244-1249.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Davies J. E., Rownd R. Transmissible multiple drug resistance in Enterobacteriaceae. Science. 1972 May 19;176(4036):758–768. doi: 10.1126/science.176.4036.758. [DOI] [PubMed] [Google Scholar]
  11. Davis B. D., Maas W. K. Analysis of the Biochemical Mechanism of Drug Resistance in Certain Bacterial Mutants. Proc Natl Acad Sci U S A. 1952 Sep;38(9):775–785. doi: 10.1073/pnas.38.9.775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Grunberg E., DeLorenzo W. F. Potentiation of sulfonamides and antibiotics by trimethoprim [2,4-diamino-5-(3,4,5-trimethoxybenzyl) pyrimidine]. Antimicrob Agents Chemother (Bethesda) 1966;6:430–433. [PubMed] [Google Scholar]
  13. Helinski D. R. Plasmid determined resistance to antibiotics: molecular properties of R factors. Annu Rev Microbiol. 1973;27:437–470. doi: 10.1146/annurev.mi.27.100173.002253. [DOI] [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. Ortiz P. J., Hotchkiss R. D. The enzymatic synthesis of dihydrofolate and dihydropteroate in cell-free preparations from wild-type and sulfonamide-resistant pneumococcus. Biochemistry. 1966 Jan;5(1):67–74. doi: 10.1021/bi00865a010. [DOI] [PubMed] [Google Scholar]
  16. ROTH B., FALCO E. A., HITCHINGS G. H., BUSHBY S. R. 5-BENZYL-2,4-DIAMINOPYRIMIDINES AS ANTIBACTERIAL AGENTS. I. SYNTHESIS AND ANTIBACTERIAL ACTIVITY IN VITRO. J Med Pharm Chem. 1962 Nov;91:1103–1123. doi: 10.1021/jm01241a004. [DOI] [PubMed] [Google Scholar]
  17. Reisberg B., Herzog J., Weinstein L. In vitro antibacterial activity of trimethoprim alone and combined with sulfonamides. Antimicrob Agents Chemother (Bethesda) 1966;6:424–429. [PubMed] [Google Scholar]
  18. Richey D. P., Brown G. M. The biosynthesis of folic acid. IX. Purification and properties of the enzymes required for the formation of dihydropteroic acid. J Biol Chem. 1969 Mar 25;244(6):1582–1592. [PubMed] [Google Scholar]
  19. SHIOTA T., DISRAELY M. N., MCCANN M. P. THE ENZYMATIC SYNTHESIS OF FOLATE-LIKE COMPOUNDS FROM HYDROXYMETHYLDIHYDROPTERIDINE PYROPHOSPHATE. J Biol Chem. 1964 Jul;239:2259–2266. [PubMed] [Google Scholar]
  20. Shaw W. V. Biochemical mechanisms of transferable drug resistance. Adv Pharmacol Chemother. 1971;9:131–172. doi: 10.1016/s1054-3589(08)60446-9. [DOI] [PubMed] [Google Scholar]
  21. Shiota T., Baugh C. M., Jackson R., Dillard R. The enzymatic synthesis of hydroxymethyldihydropteridine pyrophosphate and dihydrofolate. Biochemistry. 1969 Dec;8(12):5022–5028. doi: 10.1021/bi00840a052. [DOI] [PubMed] [Google Scholar]
  22. Sköld O., Widh A. A new dihydrofolate reductase with low trimethoprim sensitivity induced by an R factor mediating high resistance to trimethoprim. J Biol Chem. 1974 Jul 10;249(13):4324–4325. [PubMed] [Google Scholar]
  23. Tillett W. S., Cambier M. J., Harris W. H. SULFONAMIDE-FAST PNEUMOCOCCI. A CLINICAL REPORT OF TWO CASES OF PNEUMONIA TOGETHER WITH EXPERIMENTAL STUDIES ON THE EFFECTIVENESS OF PENICILLIN AND TYROTHRICIN AGAINST SULFONAMIDE-RESISTANT STRAINS. J Clin Invest. 1943 Mar;22(2):249–255. doi: 10.1172/JCI101390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. White P. J., Woods D. D. The synthesis of p-aminobenzoic acid and folic acid by staphylococci sensitive and resistant to sulphonamides. J Gen Microbiol. 1965 Aug;40(2):243–253. doi: 10.1099/00221287-40-2-243. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES