Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1975 Aug;72(8):2955–2958. doi: 10.1073/pnas.72.8.2955

ATP, cyclic AMP, and magnesium increase the affinity of rat striatal tyrosine hydroxylase for its cofactor.

W Lovenberg, E A Bruckwick, I Hanbauer
PMCID: PMC432897  PMID: 241999

Abstract

Treatment of rat striatal tyrosine hydroxylase [tyrosine 3-monooxygenase; L-tyrosine, tetrahydropteridine:oxygen oxidoreductase (3-hydroxylating); EC 1.14.16.2] with conditions optimal for protein phosphorylation results in the reduction of the tyrosine hydroxylase Km for the cofactor 6-methyltetrahydropterin from 0.50 mM to 0.16 mM. This reaction is dependent upon ATP, 3':5'-cAMP, and Mg++ and causes a marked decrease in the sensitivity to end-product inhibition. Other brain regions and the adrenal gland show a similar response.

Full text

PDF
2958

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andén N. E., Bédard P., Fuxe K., Ungerstedt U. Early and selective increase in brain dopamine levels after axotomy. Experientia. 1972 Mar 15;28(3):300–302. doi: 10.1007/BF01928702. [DOI] [PubMed] [Google Scholar]
  2. Carlsson A., Kehr W., Lindqvist M. Short-term control of tyrosine hydroxylase. Adv Biochem Psychopharmacol. 1974;12(0):135–142. [PubMed] [Google Scholar]
  3. Chuang D. M., Costa E. Biosynthesis of tyrosine hydroxylase in rat adrenal medulla after exposure to cold. Proc Natl Acad Sci U S A. 1974 Nov;71(11):4570–4574. doi: 10.1073/pnas.71.11.4570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cicero T. J., Sharpe L. G., Robins E., Grote S. S. Regional distribution of tyrosine hydroxylase in rat brain. J Neurochem. 1972 Sep;19(9):2241–2243. doi: 10.1111/j.1471-4159.1972.tb05136.x. [DOI] [PubMed] [Google Scholar]
  5. Clement-Cormier Y. C., Kebabian J. W., Petzold G. L., Greengard P. Dopamine-sensitive adenylate cyclase in mammalian brain: a possible site of action of antipsychotic drugs. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1113–1117. doi: 10.1073/pnas.71.4.1113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Costa E., Guidotti A., Zivkovic B. Short- and long-term regulation of tyrosine hydroxylase. Adv Biochem Psychopharmacol. 1974;12(0):161–175. [PubMed] [Google Scholar]
  7. Harris J. E., Morgenroth V. H., 3rd, Roth R. H., Baldessarini R. J. Regulation of catecholamine synthesis in the rat brain in vitro by cyclic AMP. Nature. 1974 Nov 8;252(5479):156–158. doi: 10.1038/252156a0. [DOI] [PubMed] [Google Scholar]
  8. Karobath M., Leitich H. Antipsychotic drugs and dopamine-stimulated adenylate cyclase prepared from corpus striatum of rat brain. Proc Natl Acad Sci U S A. 1974 Jul;71(7):2915–2918. doi: 10.1073/pnas.71.7.2915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kebabian J. W., Petzold G. L., Greengard P. Dopamine-sensitive adenylate cyclase in caudate nucleus of rat brain, and its similarity to the "dopamine receptor". Proc Natl Acad Sci U S A. 1972 Aug;69(8):2145–2149. doi: 10.1073/pnas.69.8.2145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kuczenski R. T., Mandell A. J. Allosteric activation of hypothalamic tyrosine hydroxylase by ions and sulphated mucopolysaccharides. J Neurochem. 1972 Jan;19(1):131–137. doi: 10.1111/j.1471-4159.1972.tb01262.x. [DOI] [PubMed] [Google Scholar]
  11. Kuczenski R. T., Mandell A. J. Regulatory properties of soluble and particulate rat brain tyrosine hydroxylase. J Biol Chem. 1972 May 25;247(10):3114–3122. [PubMed] [Google Scholar]
  12. Lloyd T., Kaufman S. The stimulation of partially purified bovine caudate tyrosine hydroxylase by phosphatidyl-L-serine. Biochem Biophys Res Commun. 1974 Aug 19;59(4):1262–1270. doi: 10.1016/0006-291x(74)90450-1. [DOI] [PubMed] [Google Scholar]
  13. Udenfriend S., Zaltzman-Nirenberg P., Nagatsu T. Inhibitors of purified beef adrenal tyrosine hydroxylase. Biochem Pharmacol. 1965 May;14(5):837–845. doi: 10.1016/0006-2952(65)90103-6. [DOI] [PubMed] [Google Scholar]
  14. Yamabe H., De Jong W., Lovenberg W. Further studies on catecholamine synthesis in the spontaneously hypertensive rat: catecholamine synthesis in the central nervous system. Eur J Pharmacol. 1973 Apr;22(1):91–98. doi: 10.1016/0014-2999(73)90188-x. [DOI] [PubMed] [Google Scholar]
  15. Zivkovic B., Guidotti A. Changes of kinetic constant of striatal tyrosine hydroxylase elicited by neuroleptics that impair the function of dopamine receptors. Brain Res. 1974 Oct 25;79(3):505–509. doi: 10.1016/0006-8993(74)90448-x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES