Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jan 1;71(Pt 1):28–30. doi: 10.1107/S2056989014026309

Crystal structure of (E)-2-{[(4-anilinophen­yl)imino]­meth­yl}phenol

Md Serajul Haque Faizi a, Turganbay S Iskenderov b, Natalia O Sharkina b,*
PMCID: PMC4331856  PMID: 25705442

The title compound crystallized with two independent mol­ecules (A and B) in the asymmetric unit, which differ essentially in the orientation of the terminal amino­phenyl ring with respect to the central benzene ring. In the crystal, mol­ecules are linked via N—H⋯O hydrogen bonds forming –A-BAB– zigzag chains propagating along [010].

Keywords: crystal structure, N-phenyl-p-phenyl­enedi­amine, salicyladehyde, PAIMP, Schiff base, hydrogen bonding

Abstract

The title compound, C19H16N2O, crystallized with two independent mol­ecules (A and B) in the asymmetric unit. There is an intra­molecular O—H⋯N hydrogen bond in each mol­ecule with the phenol ring being inclined to the central benzene ring by 4.93 (14) and 7.12 (14)° in mol­ecules A and B, respectively. The conformation of the two mol­ecules differs essentially in the orientation of the terminal amino­phenyl ring with respect to the central benzene ring; this dihedral angle is 50.51 (4)° in mol­ecule A and 54.61 (14)° in mol­ecule B. The two outer aromatic rings are inclined to one another by 51.39 (14) and 49.88 (14)° in mol­ecules A and B, respectively. In the crystal, mol­ecules are connected by N—H⋯O hydrogen bonds generating –A-BAB– zigzag chains extending along [010]. The chains are linked via C—H⋯π inter­actions involving neighbouring A mol­ecules, forming slabs lying parallel to (100).

Chemical context  

Schiff bases often exhibit various biological activities and in many cases have been shown to have anti­bacterial, anti­cancer, anti-inflammatory and anti­toxic properties (Lozier et al., 1975). They are used as anion sensors (Dalapati et al., 2011), as non-linear optics compounds (Sun et al., 2012) and as versatile polynuclear ligands for multinuclear magnetic exchange clusters (Moroz et al., 2012). Schiff bases have also been used to prepare metal complexes (Faizi & Sen, 2014; Faizi & Hussain, 2014; Penkova et al., 2010). We report herein on the crystal structure of the title compound synthesized by the condensation reaction of salicyladehyde and N-phenyl-p-phenyl­enedi­amine.graphic file with name e-71-00028-scheme1.jpg

Structural commentary  

The title compound crystallized with two independent mol­ecules (A and B) in the asymmetric unit (Fig. 1). There is an intra­molecular O—H⋯N hydrogen bond in each mol­ecule, which is a common feature in related imine-phenol compounds and it stabilizes the mol­ecular structure (Table 1 and Fig. 1). The imine group displays a torsion angle C6—C7—N1—C8 = 178.8 (2)° in mol­ecule A and C25—C26—N3—C27 = 178.5 (2)° in mol­ecule B. In mol­ecules A and B the phenol rings (C1–C6 and C20–C25) are inclined to the central benzene rings (C8–C13 and C27–C32) by 4.93 (14) and 7.12 (14)°, respectively.

Figure 1.

Figure 1

The mol­ecular structure of the two independent mol­ecules (A and B) of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 40% probability level. Intra­molecular O—H⋯N hydrogen bonds are shown as dashed lines (see Table 1 for details).

Table 1. Hydrogen-bond geometry (, ).

Cg1 is the centroid of ring C1C6 in molecule A.

DHA DH HA D A DHA
O1H4AN1 0.82 1.86 2.568(3) 144
O2H3AN3 0.82 1.82 2.550(3) 148
N2H1AO2i 0.86 2.29 3.006(4) 141
N4H2AO1ii 0.86 2.33 3.179(4) 168
C15H13Cg1iii 0.93 2.92 3.581(4) 129

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

The conformation of the two mol­ecules differs essentially in the orientation of the terminal amino­phenyl rings (C14–C19 and C33–C38) with respect to the central benzene rings (C8–C13 and C27–C32); this dihedral angle is 50.51 (4)° in mol­ecule A and 54.61 (14)° in mol­ecule B. The two outer aromatic rings (C1–C6 and C14–C19 in A, and C20–C25 and C33–C38 in B) are inclined to one another by 51.39 (14) and 49.88 (14)° in mol­ecules A and B, respectively. The C—N, C N and C—C bond lengths are normal and close to the values observed in related structures (Sliva et al., 1997; Petrusenko et al., 1997).

Supra­molecular features  

In the crystal, mol­ecules are connected by N—H⋯O hydrogen bonds, generating –A-BAB– zigzag chains extending along [010]; Table 1 and Fig. 2. The chains are linked via C—H⋯π inter­actions involving neighbouring A mol­ecules, forming slabs lying parallel to (100); see Table 1 and Fig. 3.

Figure 2.

Figure 2

A view of the –A-BAB– zigzag hydrogen-bonded chain in the crystal of the title compound, extending along the b axis (hydrogen bonds are shown as dashed lines; see Table 1 for details).

Figure 3.

Figure 3

A view along the c axis of the crystal packing of the title compound. The hydrogen bonds and C—H⋯π inter­actions are shown as dashed lines (see Table 1 for details; for the latter inter­actions the atoms involved are shown as light and dark grey balls).

Database survey  

There are very few examples of similar compounds in the literature although some metal complexes of similar ligands have been reported on (Xie et al., 2013; Safin et al., 2012). A search of the Cambridge Structural Database (Version 5.35, May 2014; Groom & Allen, 2014) revealed the structure of one very similar compound, viz. N-[(E)-4-chloro­benzyl­idene]-N′-phenyl­benzene-1,4-di­amine (II) (Nor Hashim et al., 2010), in which the 2-phenol ring in the title compound is replaced by a 4-chloro­benzene ring. In (II), the central six-membered ring makes a dihedral angle of 12.26 (10)° with the 4-chloro­phenyl ring. The same dihedral angle is smaller in the title compound, 4.93 (14)° in mol­ecule A and 7.12 (14)° in mol­ecule B, owing to the presence of the intra­molecular O—H⋯N hydrogen bond. The outer phenyl ring is inclined to the central six-membered ring by 44.18 (11)° in (II), compared to 50.51 (4) and 54.61 (14)° in mol­ecules A and B, respectively, of the title compound.

Synthesis and crystallization  

100 mg (1 mmol) of N-phenyl-p-phenyl­enedi­amine were dissolved in 10 ml of absolute ethanol. To this solution, 66 mg (1 mmol) of salicyladehyde in 5 ml of absolute ethanol was added dropwise with stirring. The mixture was stirred for 10 min, two drops of glacial acetic acid were then added and the mixture was further refluxed for 2 h. The resulting reddish yellow precipitate was recovered by filtration, washed several times with a small portions of EtOH and then with diethyl ether to give 120 mg (75%) of the title compound. Crystals suitable for X-ray analysis was obtained within 3 days by slow evaporation of a solution in methanol.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The N—H and O—H H atoms were located from a difference Fourier map and constrained to ride on their parent atoms, with N—H = 0.86 and O—H = 0.82 Å and with U iso(H) = 1.2U eq(N) and = 1.5U eq(O). All C-bound H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å and with U iso(H) = 1.2U eq(C).

Table 2. Experimental details.

Crystal data
Chemical formula C19H16N2O
M r 288.34
Crystal system, space group Monoclinic, P21
Temperature (K) 100
a, b, c () 7.704(6), 16.706(12), 11.617(9)
() 93.880(14)
V (3) 1492(2)
Z 4
Radiation type Mo K
(mm1) 0.08
Crystal size (mm) 0.20 0.15 0.12
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 2004)
T min, T max 0.986, 0.990
No. of measured, independent and observed [I > 2(I)] reflections 8013, 5245, 4091
R int 0.026
(sin /)max (1) 0.606
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.045, 0.127, 0.97
No. of reflections 5242
No. of parameters 397
No. of restraints 1
H-atom treatment H-atom parameters constrained
max, min (e 3) 0.12, 0.15

Computer programs: SMART and SAINT (Bruker, 2003), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenberg Putz, 2006), Mercury (Macrae et al., 2008) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989014026309/su5028sup1.cif

e-71-00028-sup1.cif (35.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989014026309/su5028Isup2.hkl

e-71-00028-Isup2.hkl (256.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989014026309/su5028Isup3.cml

CCDC reference: 1036844

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the National Taras Shevchenko University, Ukraine, for financial support.

supplementary crystallographic information

Crystal data

C19H16N2O F(000) = 608
Mr = 288.34 Dx = 1.284 Mg m3
Monoclinic, P21 Melting point: 280 K
Hall symbol: P 2yb Mo Kα radiation, λ = 0.71073 Å
a = 7.704 (6) Å Cell parameters from 2553 reflections
b = 16.706 (12) Å θ = 2.7–23.7°
c = 11.617 (9) Å µ = 0.08 mm1
β = 93.880 (14)° T = 100 K
V = 1492 (2) Å3 Needle, dark yellow
Z = 4 0.20 × 0.15 × 0.12 mm

Data collection

Bruker SMART APEX CCD diffractometer 5245 independent reflections
Radiation source: fine-focus sealed tube 4091 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.026
ω scans θmax = 25.5°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) h = −9→7
Tmin = 0.986, Tmax = 0.990 k = −20→19
8013 measured reflections l = −14→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127 H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0711P)2 + 0.0812P] where P = (Fo2 + 2Fc2)/3
5242 reflections (Δ/σ)max < 0.001
397 parameters Δρmax = 0.12 e Å3
1 restraint Δρmin = −0.15 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C15 0.2606 (3) 0.66796 (17) 0.4413 (2) 0.0599 (7)
H13 0.2251 0.6192 0.4706 0.072*
C16 0.2437 (4) 0.73672 (18) 0.5044 (3) 0.0642 (7)
H14 0.1982 0.7337 0.5764 0.077*
C17 0.2923 (4) 0.80966 (19) 0.4637 (3) 0.0763 (9)
H15 0.2800 0.8559 0.5070 0.092*
C18 0.3596 (5) 0.8129 (2) 0.3573 (3) 0.0834 (10)
H16 0.3913 0.8621 0.3276 0.100*
C19 0.3807 (4) 0.74423 (19) 0.2938 (3) 0.0715 (8)
H17 0.4296 0.7474 0.2229 0.086*
C14 0.3301 (3) 0.67070 (16) 0.3346 (2) 0.0544 (6)
C11 0.3031 (3) 0.52520 (15) 0.2888 (2) 0.0538 (6)
C12 0.2085 (4) 0.47990 (17) 0.2069 (2) 0.0605 (7)
H20 0.1685 0.5035 0.1377 0.073*
C13 0.1725 (4) 0.40068 (17) 0.2262 (2) 0.0605 (7)
H21 0.1083 0.3717 0.1698 0.073*
C8 0.2303 (3) 0.36316 (15) 0.3284 (2) 0.0515 (6)
C9 0.3247 (4) 0.40894 (15) 0.4112 (2) 0.0595 (7)
H23 0.3630 0.3856 0.4810 0.071*
C10 0.3620 (4) 0.48772 (16) 0.3914 (2) 0.0602 (7)
H24 0.4275 0.5167 0.4472 0.072*
C1 0.0687 (3) 0.12055 (16) 0.3414 (2) 0.0569 (7)
C2 0.0062 (4) 0.04379 (18) 0.3517 (3) 0.0647 (7)
H26 −0.0649 0.0215 0.2922 0.078*
C3 0.0489 (4) −0.00004 (18) 0.4503 (3) 0.0722 (8)
H27 0.0082 −0.0522 0.4563 0.087*
C4 0.1521 (4) 0.03320 (18) 0.5403 (3) 0.0696 (8)
H28 0.1804 0.0036 0.6067 0.083*
C5 0.2121 (4) 0.10975 (17) 0.5308 (3) 0.0621 (7)
H29 0.2825 0.1315 0.5911 0.075*
C6 0.1703 (3) 0.15580 (16) 0.4335 (2) 0.0525 (6)
C7 0.2253 (3) 0.23864 (16) 0.4276 (2) 0.0542 (6)
H37 0.2917 0.2607 0.4895 0.065*
N2 0.3442 (3) 0.60413 (13) 0.2630 (2) 0.0663 (7)
H1A 0.3817 0.6130 0.1961 0.080*
N1 0.1843 (3) 0.28196 (13) 0.3392 (2) 0.0560 (6)
O1 0.0278 (3) 0.16115 (13) 0.24309 (16) 0.0714 (5)
H4A 0.0827 0.2032 0.2434 0.107*
C33 0.1682 (3) 1.17385 (17) 0.9328 (2) 0.0590 (7)
C38 0.2378 (4) 1.24246 (19) 0.9834 (3) 0.0693 (8)
H2 0.2798 1.2416 1.0603 0.083*
C37 0.2458 (4) 1.31204 (19) 0.9210 (3) 0.0762 (9)
H3 0.2929 1.3580 0.9560 0.091*
C36 0.1842 (4) 1.31411 (19) 0.8067 (3) 0.0707 (8)
H4 0.1910 1.3609 0.7639 0.085*
C35 0.1130 (4) 1.24640 (18) 0.7571 (3) 0.0663 (7)
H5 0.0697 1.2476 0.6804 0.080*
C34 0.1046 (4) 1.17697 (18) 0.8187 (2) 0.0655 (7)
H6 0.0557 1.1315 0.7836 0.079*
C30 0.1879 (4) 1.02639 (16) 0.9723 (2) 0.0565 (7)
C29 0.2807 (4) 1.00490 (16) 0.8772 (2) 0.0592 (7)
H8 0.3174 1.0442 0.8276 0.071*
C28 0.3171 (4) 0.92596 (16) 0.8573 (2) 0.0593 (7)
H9 0.3780 0.9124 0.7936 0.071*
C27 0.2653 (3) 0.86564 (15) 0.9300 (2) 0.0532 (6)
C32 0.1747 (4) 0.88786 (17) 1.0241 (2) 0.0603 (7)
H11 0.1397 0.8486 1.0743 0.072*
C31 0.1356 (4) 0.96604 (17) 1.0447 (2) 0.0633 (7)
H12 0.0733 0.9791 1.1079 0.076*
C25 0.3974 (3) 0.66532 (15) 0.8267 (2) 0.0511 (6)
C24 0.4721 (4) 0.63136 (18) 0.7335 (2) 0.0616 (7)
H32 0.5007 0.6639 0.6727 0.074*
C23 0.5049 (4) 0.55121 (18) 0.7285 (3) 0.0651 (7)
H33 0.5572 0.5298 0.6656 0.078*
C22 0.4601 (4) 0.50243 (18) 0.8170 (3) 0.0640 (7)
H34 0.4804 0.4476 0.8134 0.077*
C21 0.3851 (4) 0.53439 (17) 0.9110 (3) 0.0643 (7)
H35 0.3554 0.5010 0.9706 0.077*
C20 0.3537 (4) 0.61552 (16) 0.9176 (2) 0.0570 (7)
C26 0.3651 (4) 0.75097 (17) 0.8317 (2) 0.0577 (7)
H38 0.3947 0.7833 0.7709 0.069*
N4 0.1551 (4) 1.10499 (14) 1.0013 (2) 0.0729 (7)
H2A 0.1231 1.1129 1.0699 0.088*
N3 0.2966 (3) 0.78277 (13) 0.9181 (2) 0.0577 (6)
O2 0.2820 (3) 0.64507 (13) 1.01166 (17) 0.0804 (6)
H3A 0.2716 0.6938 1.0058 0.121*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C15 0.0657 (16) 0.0499 (15) 0.0653 (17) −0.0044 (13) 0.0135 (13) 0.0061 (14)
C16 0.0660 (18) 0.0598 (18) 0.0674 (17) −0.0004 (14) 0.0095 (14) −0.0059 (15)
C17 0.086 (2) 0.0538 (19) 0.088 (2) −0.0044 (16) −0.0051 (18) −0.0101 (17)
C18 0.102 (3) 0.0523 (19) 0.095 (3) −0.0241 (18) −0.003 (2) 0.0120 (18)
C19 0.083 (2) 0.0619 (19) 0.0699 (19) −0.0170 (16) 0.0064 (15) 0.0121 (17)
C14 0.0537 (14) 0.0489 (15) 0.0603 (16) −0.0029 (12) 0.0026 (12) 0.0069 (13)
C11 0.0606 (16) 0.0503 (15) 0.0518 (15) 0.0064 (12) 0.0117 (12) 0.0039 (12)
C12 0.0727 (18) 0.0622 (18) 0.0466 (15) 0.0055 (14) 0.0038 (13) 0.0020 (13)
C13 0.0654 (17) 0.0652 (19) 0.0504 (16) 0.0026 (14) 0.0005 (13) −0.0083 (13)
C8 0.0530 (14) 0.0499 (15) 0.0516 (15) 0.0028 (12) 0.0029 (11) 0.0000 (12)
C9 0.0687 (18) 0.0539 (17) 0.0547 (16) 0.0058 (13) −0.0049 (13) 0.0033 (13)
C10 0.0702 (18) 0.0488 (16) 0.0606 (17) 0.0005 (13) −0.0022 (13) −0.0007 (13)
C1 0.0594 (16) 0.0568 (17) 0.0555 (16) 0.0032 (13) 0.0124 (13) −0.0025 (14)
C2 0.0672 (17) 0.0598 (18) 0.0680 (19) −0.0055 (14) 0.0120 (14) −0.0123 (15)
C3 0.077 (2) 0.0545 (17) 0.088 (2) −0.0032 (15) 0.0223 (17) −0.0045 (17)
C4 0.080 (2) 0.0582 (18) 0.0706 (19) 0.0098 (16) 0.0088 (16) 0.0067 (15)
C5 0.0650 (17) 0.0576 (17) 0.0636 (18) 0.0059 (14) 0.0027 (14) −0.0027 (14)
C6 0.0541 (14) 0.0490 (15) 0.0555 (15) 0.0042 (12) 0.0112 (11) −0.0037 (12)
C7 0.0603 (16) 0.0526 (16) 0.0504 (15) 0.0029 (13) 0.0083 (12) −0.0037 (13)
N2 0.0920 (18) 0.0493 (14) 0.0597 (14) 0.0024 (13) 0.0212 (13) 0.0051 (11)
N1 0.0609 (13) 0.0488 (13) 0.0589 (14) 0.0015 (10) 0.0092 (11) −0.0036 (11)
O1 0.0855 (13) 0.0679 (13) 0.0599 (11) −0.0105 (11) −0.0026 (9) −0.0010 (10)
C33 0.0608 (16) 0.0555 (17) 0.0611 (17) 0.0088 (14) 0.0070 (13) −0.0025 (14)
C38 0.0741 (19) 0.0608 (18) 0.0713 (19) 0.0029 (16) −0.0063 (15) −0.0145 (17)
C37 0.087 (2) 0.0529 (19) 0.089 (2) −0.0051 (16) 0.0059 (18) −0.0099 (17)
C36 0.077 (2) 0.0549 (18) 0.082 (2) 0.0044 (15) 0.0180 (16) 0.0056 (16)
C35 0.0669 (18) 0.0671 (19) 0.0648 (17) 0.0043 (15) 0.0047 (14) 0.0028 (16)
C34 0.0784 (19) 0.0552 (17) 0.0628 (17) −0.0073 (15) 0.0030 (14) −0.0036 (14)
C30 0.0624 (17) 0.0513 (16) 0.0552 (15) 0.0023 (13) −0.0003 (13) −0.0036 (13)
C29 0.0659 (17) 0.0544 (17) 0.0583 (16) −0.0025 (13) 0.0108 (13) 0.0049 (13)
C28 0.0635 (17) 0.0556 (17) 0.0604 (16) −0.0003 (13) 0.0147 (13) 0.0012 (13)
C27 0.0584 (15) 0.0493 (16) 0.0521 (15) −0.0045 (12) 0.0058 (12) 0.0017 (12)
C32 0.0705 (18) 0.0588 (18) 0.0525 (15) −0.0069 (14) 0.0112 (13) 0.0045 (13)
C31 0.0710 (18) 0.0634 (18) 0.0570 (16) 0.0022 (14) 0.0145 (14) 0.0009 (14)
C25 0.0513 (14) 0.0506 (16) 0.0515 (15) −0.0019 (12) 0.0025 (11) 0.0033 (13)
C24 0.0654 (17) 0.0656 (19) 0.0551 (16) −0.0014 (14) 0.0135 (13) 0.0012 (13)
C23 0.0669 (17) 0.067 (2) 0.0625 (17) 0.0038 (14) 0.0140 (14) −0.0039 (15)
C22 0.0665 (18) 0.0533 (17) 0.0722 (19) −0.0006 (14) 0.0046 (14) −0.0061 (15)
C21 0.081 (2) 0.0512 (17) 0.0612 (18) −0.0003 (14) 0.0117 (15) 0.0074 (13)
C20 0.0666 (17) 0.0566 (17) 0.0482 (15) −0.0006 (13) 0.0066 (13) −0.0008 (13)
C26 0.0631 (16) 0.0589 (18) 0.0516 (15) −0.0035 (13) 0.0070 (13) 0.0083 (14)
N4 0.105 (2) 0.0584 (16) 0.0569 (14) 0.0095 (14) 0.0161 (13) −0.0026 (12)
N3 0.0646 (14) 0.0497 (14) 0.0591 (14) −0.0009 (11) 0.0060 (11) 0.0018 (11)
O2 0.1272 (18) 0.0600 (13) 0.0575 (12) 0.0089 (12) 0.0318 (12) 0.0068 (9)

Geometric parameters (Å, º)

C15—C16 1.373 (4) C33—C34 1.383 (4)
C15—C14 1.384 (4) C33—C38 1.380 (4)
C15—H13 0.9300 C33—N4 1.406 (4)
C16—C17 1.368 (4) C38—C37 1.373 (5)
C16—H14 0.9300 C38—H2 0.9300
C17—C18 1.374 (5) C37—C36 1.381 (5)
C17—H15 0.9300 C37—H3 0.9300
C18—C19 1.380 (5) C36—C35 1.367 (4)
C18—H16 0.9300 C36—H4 0.9300
C19—C14 1.382 (4) C35—C34 1.367 (4)
C19—H17 0.9300 C35—H5 0.9300
C14—N2 1.397 (4) C34—H6 0.9300
C11—C12 1.384 (4) C30—N4 1.383 (4)
C11—N2 1.393 (3) C30—C31 1.390 (4)
C11—C10 1.395 (4) C30—C29 1.403 (4)
C12—C13 1.374 (4) C29—C28 1.371 (4)
C12—H20 0.9300 C29—H8 0.9300
C13—C8 1.389 (4) C28—C27 1.391 (4)
C13—H21 0.9300 C28—H9 0.9300
C8—C9 1.394 (4) C27—C32 1.387 (4)
C8—N1 1.410 (3) C27—N3 1.414 (3)
C9—C10 1.370 (4) C32—C31 1.365 (4)
C9—H23 0.9300 C32—H11 0.9300
C10—H24 0.9300 C31—H12 0.9300
C1—O1 1.348 (3) C25—C24 1.382 (4)
C1—C2 1.378 (4) C25—C20 1.403 (4)
C1—C6 1.411 (4) C25—C26 1.454 (4)
C2—C3 1.380 (4) C24—C23 1.365 (4)
C2—H26 0.9300 C24—H32 0.9300
C3—C4 1.386 (4) C23—C22 1.375 (4)
C3—H27 0.9300 C23—H33 0.9300
C4—C5 1.367 (4) C22—C21 1.377 (4)
C4—H28 0.9300 C22—H34 0.9300
C5—C6 1.388 (4) C21—C20 1.380 (4)
C5—H29 0.9300 C21—H35 0.9300
C6—C7 1.450 (4) C20—O2 1.350 (3)
C7—N1 1.278 (3) C26—N3 1.280 (3)
C7—H37 0.9300 C26—H38 0.9300
N2—H1A 0.8600 N4—H2A 0.8600
O1—H4A 0.8200 O2—H3A 0.8200
C16—C15—C14 120.4 (3) C34—C33—C38 118.6 (3)
C16—C15—H13 119.8 C34—C33—N4 122.6 (3)
C14—C15—H13 119.8 C38—C33—N4 118.7 (3)
C15—C16—C17 121.5 (3) C33—C38—C37 120.6 (3)
C15—C16—H14 119.3 C33—C38—H2 119.7
C17—C16—H14 119.3 C37—C38—H2 119.7
C18—C17—C16 118.4 (3) C36—C37—C38 120.3 (3)
C18—C17—H15 120.8 C36—C37—H3 119.9
C16—C17—H15 120.8 C38—C37—H3 119.9
C17—C18—C19 120.9 (3) C37—C36—C35 119.1 (3)
C17—C18—H16 119.6 C37—C36—H4 120.4
C19—C18—H16 119.6 C35—C36—H4 120.4
C14—C19—C18 120.7 (3) C34—C35—C36 120.9 (3)
C14—C19—H17 119.7 C34—C35—H5 119.6
C18—C19—H17 119.7 C36—C35—H5 119.6
C15—C14—C19 118.1 (3) C35—C34—C33 120.5 (3)
C15—C14—N2 123.9 (2) C35—C34—H6 119.7
C19—C14—N2 117.9 (2) C33—C34—H6 119.7
C12—C11—N2 119.1 (2) N4—C30—C31 118.5 (3)
C12—C11—C10 117.9 (3) N4—C30—C29 123.1 (3)
N2—C11—C10 122.9 (3) C31—C30—C29 118.3 (3)
C13—C12—C11 121.2 (3) C28—C29—C30 120.0 (3)
C13—C12—H20 119.4 C28—C29—H8 120.0
C11—C12—H20 119.4 C30—C29—H8 120.0
C12—C13—C8 121.2 (3) C29—C28—C27 121.6 (3)
C12—C13—H21 119.4 C29—C28—H9 119.2
C8—C13—H21 119.4 C27—C28—H9 119.2
C13—C8—C9 117.7 (2) C32—C27—C28 117.7 (3)
C13—C8—N1 116.3 (2) C32—C27—N3 115.9 (2)
C9—C8—N1 126.0 (2) C28—C27—N3 126.4 (2)
C10—C9—C8 121.1 (3) C31—C32—C27 121.5 (3)
C10—C9—H23 119.5 C31—C32—H11 119.2
C8—C9—H23 119.5 C27—C32—H11 119.2
C9—C10—C11 121.0 (3) C32—C31—C30 120.8 (3)
C9—C10—H24 119.5 C32—C31—H12 119.6
C11—C10—H24 119.5 C30—C31—H12 119.6
O1—C1—C2 118.6 (3) C24—C25—C20 118.7 (2)
O1—C1—C6 121.2 (2) C24—C25—C26 121.1 (2)
C2—C1—C6 120.1 (3) C20—C25—C26 120.2 (2)
C1—C2—C3 120.1 (3) C23—C24—C25 121.7 (3)
C1—C2—H26 120.0 C23—C24—H32 119.2
C3—C2—H26 120.0 C25—C24—H32 119.2
C2—C3—C4 120.4 (3) C24—C23—C22 119.5 (3)
C2—C3—H27 119.8 C24—C23—H33 120.2
C4—C3—H27 119.8 C22—C23—H33 120.2
C5—C4—C3 119.6 (3) C21—C22—C23 120.2 (3)
C5—C4—H28 120.2 C21—C22—H34 119.9
C3—C4—H28 120.2 C23—C22—H34 119.9
C4—C5—C6 121.5 (3) C22—C21—C20 120.7 (3)
C4—C5—H29 119.2 C22—C21—H35 119.7
C6—C5—H29 119.2 C20—C21—H35 119.7
C5—C6—C1 118.2 (2) O2—C20—C21 119.2 (2)
C5—C6—C7 121.0 (2) O2—C20—C25 121.6 (2)
C1—C6—C7 120.8 (2) C21—C20—C25 119.2 (3)
N1—C7—C6 121.4 (2) N3—C26—C25 121.4 (2)
N1—C7—H37 119.3 N3—C26—H38 119.3
C6—C7—H37 119.3 C25—C26—H38 119.3
C14—N2—C11 126.7 (2) C30—N4—C33 128.2 (2)
C14—N2—H1A 116.5 C30—N4—H2A 116.0
C11—N2—H1A 116.9 C33—N4—H2A 115.8
C7—N1—C8 124.5 (2) C26—N3—C27 124.4 (2)
C1—O1—H4A 109.7 C20—O2—H3A 109.8
C14—C15—C16—C17 0.9 (4) C34—C33—C38—C37 −0.8 (4)
C15—C16—C17—C18 −0.1 (5) N4—C33—C38—C37 −177.0 (3)
C16—C17—C18—C19 −1.2 (5) C33—C38—C37—C36 −0.1 (5)
C17—C18—C19—C14 1.8 (5) C38—C37—C36—C35 1.0 (5)
C16—C15—C14—C19 −0.2 (4) C37—C36—C35—C34 −0.9 (5)
C16—C15—C14—N2 −177.0 (3) C36—C35—C34—C33 0.0 (5)
C18—C19—C14—C15 −1.1 (4) C38—C33—C34—C35 0.9 (4)
C18—C19—C14—N2 175.8 (3) N4—C33—C34—C35 176.9 (3)
N2—C11—C12—C13 176.7 (3) N4—C30—C29—C28 176.2 (3)
C10—C11—C12—C13 0.4 (4) C31—C30—C29—C28 0.2 (4)
C11—C12—C13—C8 −0.2 (4) C30—C29—C28—C27 −0.5 (4)
C12—C13—C8—C9 0.6 (4) C29—C28—C27—C32 0.0 (4)
C12—C13—C8—N1 179.4 (3) C29—C28—C27—N3 −179.6 (3)
C13—C8—C9—C10 −1.3 (4) C28—C27—C32—C31 0.6 (4)
N1—C8—C9—C10 −179.9 (3) N3—C27—C32—C31 −179.7 (3)
C8—C9—C10—C11 1.5 (4) C27—C32—C31—C30 −0.9 (4)
C12—C11—C10—C9 −1.1 (4) N4—C30—C31—C32 −175.8 (3)
N2—C11—C10—C9 −177.2 (3) C29—C30—C31—C32 0.4 (4)
O1—C1—C2—C3 178.5 (2) C20—C25—C24—C23 −0.4 (4)
C6—C1—C2—C3 −2.7 (4) C26—C25—C24—C23 179.2 (2)
C1—C2—C3—C4 1.2 (4) C25—C24—C23—C22 1.2 (5)
C2—C3—C4—C5 −0.2 (5) C24—C23—C22—C21 −1.0 (4)
C3—C4—C5—C6 0.8 (5) C23—C22—C21—C20 0.1 (4)
C4—C5—C6—C1 −2.3 (4) C22—C21—C20—O2 −179.2 (3)
C4—C5—C6—C7 175.9 (3) C22—C21—C20—C25 0.7 (4)
O1—C1—C6—C5 −178.0 (2) C24—C25—C20—O2 179.3 (3)
C2—C1—C6—C5 3.2 (4) C26—C25—C20—O2 −0.3 (4)
O1—C1—C6—C7 3.7 (4) C24—C25—C20—C21 −0.5 (4)
C2—C1—C6—C7 −175.0 (2) C26—C25—C20—C21 179.9 (3)
C5—C6—C7—N1 −178.5 (2) C24—C25—C26—N3 −179.7 (3)
C1—C6—C7—N1 −0.4 (4) C20—C25—C26—N3 −0.1 (4)
C15—C14—N2—C11 −4.5 (4) C31—C30—N4—C33 −168.0 (3)
C19—C14—N2—C11 178.8 (3) C29—C30—N4—C33 16.0 (5)
C12—C11—N2—C14 134.9 (3) C34—C33—N4—C30 44.6 (5)
C10—C11—N2—C14 −49.0 (4) C38—C33—N4—C30 −139.4 (3)
C6—C7—N1—C8 178.8 (2) C25—C26—N3—C27 178.5 (2)
C13—C8—N1—C7 −179.3 (2) C32—C27—N3—C26 173.9 (3)
C9—C8—N1—C7 −0.7 (4) C28—C27—N3—C26 −6.4 (4)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of ring C1–C6 in molecule A.

D—H···A D—H H···A D···A D—H···A
O1—H4A···N1 0.82 1.86 2.568 (3) 144
O2—H3A···N3 0.82 1.82 2.550 (3) 148
N2—H1A···O2i 0.86 2.29 3.006 (4) 141
N4—H2A···O1ii 0.86 2.33 3.179 (4) 168
C15—H13···Cg1iii 0.93 2.92 3.581 (4) 129

Symmetry codes: (i) x, y, z−1; (ii) x, y+1, z+1; (iii) −x, y+1/2, −z+1.

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  2. Brandenberg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  3. Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Dalapati, S., Alam, M. A., Jana, S. & Guchhait, N. (2011). J. Fluor. Chem. 132, 536–540.
  5. Faizi, M. S. H. & Hussain, S. (2014). Acta Cryst. E70, m197. [DOI] [PMC free article] [PubMed]
  6. Faizi, M. S. H. & Sen, P. (2014). Acta Cryst. E70, m173. [DOI] [PMC free article] [PubMed]
  7. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  8. Lozier, R. H., Bogomolni, R. A. & Stoeckenius, W. (1975). Biophys. J. 15, 955–962. [DOI] [PMC free article] [PubMed]
  9. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  10. Moroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). Inorg. Chem. 51, 7445–7447. [DOI] [PubMed]
  11. Nor Hashim, N. Z., Kassim, K. & Yamin, B. M. (2010). Acta Cryst. E66, o2039. [DOI] [PMC free article] [PubMed]
  12. Penkova, L., Demeshko, S., Pavlenko, V. A., Dechert, S., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chim. Acta, 363, 3036–3040.
  13. Petrusenko, S. R., Kokozay, V. N. & Fritsky, I. O. (1997). Polyhedron, 16, 267–274.
  14. Safin, D. A., Robeyns, K. & Garcia, Y. (2012). RSC Adv. 2, 11379–11388.
  15. Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.
  16. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  17. Sliva, T. Yu., Duda, A. M., Głowiak, T., Fritsky, I. O., Amirkhanov, V. M., Mokhir, A. A. & Kozłowski, H. (1997). J. Chem. Soc. Dalton Trans. pp. 273–276.
  18. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  19. Sun, Y., Wang, Y., Liu, Z., Huang, C. & Yu, C. (2012). Spectrochim. Acta Part A, 96, 42–50. [DOI] [PubMed]
  20. Xie, Y.-Z., Shan, G.-G., Li, P., Zhou, Z.-Y. & Su, Z.-M. (2013). Dyes and Pigments, 96, 467–474.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989014026309/su5028sup1.cif

e-71-00028-sup1.cif (35.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989014026309/su5028Isup2.hkl

e-71-00028-Isup2.hkl (256.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989014026309/su5028Isup3.cml

CCDC reference: 1036844

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES