Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jan 1;71(Pt 1):o49–o50. doi: 10.1107/S2056989014027108

Crystal structure of N 1,N 1-diethyl-N 4-[(quinolin-2-yl)methyl­idene]benzene-1,4-di­amine

Md Serajul Haque Faizi a, Nazia Siddiqui a, Saleem Javed b,*
PMCID: PMC4331901  PMID: 25705502

Abstract

The title compound, C20H21N3, is non-planar with a dihedral angle between the planes of the quinoline and phenyl­enedi­amine rings of 9.40 (4)°. In the crystal, mol­ecules are connected by C—H⋯π inter­actions, generating a chain extending along the a-axis direction. Weak C—H⋯π inter­actions also occur.

Keywords: crystal structure; benzene-1,4-di­amine; quinoline; C—H⋯π inter­actions; quinolinyl-containing Schiff bases

Related literature  

For applications of quinolinyl-containing Schiff bases, see: Das et al. (2013); Jursic et al. (2002); Motswainyana et al. (2013); Song et al. (2011). The present work is part of an ongoing structural study of Schiff base–metal complexes, see: Faizi & Hussain (2014); Faizi & Sen (2014); Faizi et al. (2014). For related Schiff bases and their applications, see: Gonzalez et al. (2012); Patra & Goldberg (2003).graphic file with name e-71-00o49-scheme1.jpg

Experimental  

Crystal data  

  • C20H21N3

  • M r = 303.40

  • Orthorhombic, Inline graphic

  • a = 20.354 (5) Å

  • b = 7.534 (5) Å

  • c = 21.801 (5) Å

  • V = 3343 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 100 K

  • 0.27 × 0.21 × 0.16 mm

Data collection  

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008a ) T min = 0.981, T max = 0.989

  • 14928 measured reflections

  • 2937 independent reflections

  • 1912 reflections with I > 2σ(I)

  • R int = 0.146

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.084

  • wR(F 2) = 0.195

  • S = 1.09

  • 2937 reflections

  • 212 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b ); molecular graphics: DIAMOND (Brandenberg & Putz, 2005); software used to prepare material for publication: DIAMOND.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989014027108/hg5416sup1.cif

e-71-00o49-sup1.cif (24.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989014027108/hg5416Isup2.hkl

e-71-00o49-Isup2.hkl (141.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989014027108/hg5416Isup3.cml

. DOI: 10.1107/S2056989014027108/hg5416fig1.tif

The mol­ecular conformation and atom-numbering scheme for the title compound, with non-H atoms drawn as 40% probability displacement ellipsoids.

a . DOI: 10.1107/S2056989014027108/hg5416fig2.tif

The mol­ecular packing viewed along the a direction.

CCDC reference: 1038674

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

Cg1, Cg2 and Cg3 are the centroids of the N1/C1/C6C9, C1C16 and C11C16 rings, respectively.

DHA DH HA D A DHA
C5H5Cg2i 0.93 2.99 3.705(5) 135
C7H7Cg1i 0.93 2.90 3.612(5) 135
C13H13Cg3ii 0.93 2.84 3.588(5) 138
C15H15Cg2iii 0.93 2.89 3.686(5) 145
C18H18A Cg1iii 0.96 2.95 3.625(5) 128

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors are grateful to the Department of Chemistry, IIT Kanpur, Kanpur 208 016, India, for the X-ray data collection and to Musheer Ahmad for valuable discussions.

supplementary crystallographic information

S1. Comment

Quinoline derivatives of Schiff bases are important building blocks of many important compounds widely used in biological applications such as antioxidative and anticancer and fluorescent probe agents in industry and in coordination chemistry (Motswainyana et al., 2013; Das et al., 2013; Song et al., 2011; Jursic et al., 2002). The present work is part of an ongoing structural study of Schiff base metal complexes (Faizi & Hussain, 2014; Faizi & Sen, 2014; Faizi et al. 2014) and we report here the structure of N1,N1-diethyl-N4-[(quinolin-2-yl)methylidene]benzene-1,4-diamine (DQMBD). There are very few examples similar to title compound and their metal complex have been reported in the literature (Patra & Goldberg 2003; Gonzalez et al., 2012). The synthesis of DQMBD by condensation of 2-quinolinecarboxaldehyde and N1,N1-diethyl-p-phenylenediamine has not previously been reported. In the title compound (Fig. 1) DQMBD has non planar structure, the dihedral angle between the quinolinyl and pphenylenediamine rings is 9.40 (4)°. In the crystal, molecules are connected by C—H···π, generating a chain extending along the a axis direction. In the crystal molecules are connected by C—H···π, giving an overall two-dimensional layered structure lying parallel to (100) is given in Fig. 2.

S2. Experimental

100 mg (1 mmol) of N1,N1-diethyl-p-phenylenediamine were dissolved in 10 ml of absolute ethanol. To this solution, 96 mg (1 mmol) of 2-quinolinecarboxaldehyde in 5 ml of absolute ethanol was dropwisely added under stirring. Then, this mixture was stirred for 10 min, two drops of glacial acetic acid were then added and the mixture was further refluxed for 2h. The resulting yellow precipitate was recovered by filtration, washed several times with a small portions of EtOH and then with diethyl ether to give 160 mg (88%) of N1,N1-diethyl-N4-(quinolin-2-ylmethylene)benzene-1,4-diamine (DQMBD). The crystal of the title compound suitable for X-ray analysis was obtained within 4 days by slow evaporation of the EtOH solvent.

S3. Refinement

the N-bound H-atoms were located in difference Fourier maps,and their positions were then held fixed. All H-atoms were positioned geometrically and refined using a riding model with C—H = 0.92–0.93 Å and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular conformation and atom-numbering scheme for the title compound, with non-H atoms drawn as 40% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

The molecular packing viewed along the a direction.

Crystal data

C20H21N3 F(000) = 1296
Mr = 303.40 Dx = 1.206 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 1765 reflections
a = 20.354 (5) Å θ = 2.7–27.5°
b = 7.534 (5) Å µ = 0.07 mm1
c = 21.801 (5) Å T = 100 K
V = 3343 (2) Å3 Needle, yellow
Z = 8 0.27 × 0.21 × 0.16 mm

Data collection

Bruker SMART APEX CCD diffractometer 2937 independent reflections
Radiation source: fine-focus sealed tube 1912 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.146
/w–scans θmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 2008a) h = −24→23
Tmin = 0.981, Tmax = 0.989 k = −8→8
14928 measured reflections l = −18→25

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.084 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.195 H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0662P)2 + 3.082P] where P = (Fo2 + 2Fc2)/3
2937 reflections (Δ/σ)max < 0.001
212 parameters Δρmax = 0.32 e Å3
0 restraints Δρmin = −0.23 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.35623 (17) −0.0493 (5) 0.07353 (16) 0.0221 (9)
C2 0.38904 (17) −0.1200 (5) 0.12533 (16) 0.0243 (9)
H2 0.4301 −0.1726 0.1205 0.029*
C3 0.36114 (17) −0.1119 (5) 0.18233 (16) 0.0241 (9)
H3 0.3830 −0.1600 0.2159 0.029*
C4 0.29920 (19) −0.0306 (5) 0.19034 (17) 0.0292 (10)
H4 0.2806 −0.0249 0.2292 0.035*
C5 0.26640 (18) 0.0397 (5) 0.14123 (16) 0.0246 (9)
H5 0.2257 0.0930 0.1472 0.029*
C6 0.29346 (17) 0.0326 (4) 0.08169 (16) 0.0195 (8)
C7 0.26231 (17) 0.0998 (5) 0.02881 (16) 0.0233 (9)
H7 0.2216 0.1552 0.0322 0.028*
C8 0.29143 (17) 0.0843 (5) −0.02734 (16) 0.0237 (9)
H8 0.2705 0.1256 −0.0625 0.028*
C9 0.35419 (17) 0.0040 (5) −0.03101 (16) 0.0204 (8)
C10 0.38967 (19) −0.0092 (5) −0.08980 (17) 0.0232 (9)
C11 0.39650 (17) 0.0327 (5) −0.19610 (15) 0.0208 (8)
C12 0.45481 (18) −0.0590 (5) −0.20748 (16) 0.0229 (8)
H12 0.4741 −0.1235 −0.1759 0.027*
C13 0.48440 (17) −0.0565 (5) −0.26392 (15) 0.0225 (9)
H13 0.5233 −0.1190 −0.2696 0.027*
C14 0.45734 (17) 0.0384 (5) −0.31347 (15) 0.0197 (8)
C15 0.39852 (16) 0.1316 (5) −0.30210 (16) 0.0208 (8)
H15 0.3792 0.1971 −0.3335 0.025*
C16 0.36925 (17) 0.1269 (5) −0.24513 (15) 0.0199 (8)
H16 0.3301 0.1883 −0.2391 0.024*
C17 0.46058 (17) 0.1451 (5) −0.42064 (15) 0.0226 (9)
H17A 0.4951 0.1662 −0.4505 0.027*
H17B 0.4464 0.2595 −0.4051 0.027*
C18 0.40284 (17) 0.0555 (5) −0.45265 (16) 0.0255 (9)
H18A 0.3874 0.1299 −0.4854 0.038*
H18B 0.3680 0.0367 −0.4237 0.038*
H18C 0.4167 −0.0567 −0.4691 0.038*
C19 0.54187 (16) −0.0777 (5) −0.38531 (15) 0.0213 (8)
H19A 0.5381 −0.1130 −0.4280 0.026*
H19B 0.5382 −0.1839 −0.3604 0.026*
C20 0.60919 (18) 0.0044 (6) −0.37512 (18) 0.0308 (10)
H20A 0.6426 −0.0802 −0.3856 0.046*
H20B 0.6137 0.0375 −0.3328 0.046*
H20C 0.6137 0.1078 −0.4005 0.046*
N1 0.38663 (14) −0.0612 (4) 0.01724 (13) 0.0227 (8)
N2 0.36253 (14) 0.0420 (4) −0.13964 (13) 0.0227 (7)
N3 0.48728 (14) 0.0418 (4) −0.37025 (12) 0.0201 (7)
H10 0.4353 (17) −0.053 (4) −0.0845 (14) 0.015 (9)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.021 (2) 0.020 (2) 0.025 (2) −0.0063 (16) 0.0031 (16) −0.0065 (16)
C2 0.019 (2) 0.024 (2) 0.030 (2) −0.0016 (16) 0.0000 (16) −0.0058 (17)
C3 0.025 (2) 0.028 (2) 0.0193 (19) −0.0033 (17) −0.0025 (16) −0.0011 (16)
C4 0.030 (2) 0.033 (2) 0.025 (2) −0.0110 (18) 0.0055 (17) −0.0053 (18)
C5 0.020 (2) 0.027 (2) 0.027 (2) −0.0042 (16) 0.0055 (16) −0.0068 (17)
C6 0.0166 (19) 0.0157 (19) 0.0261 (19) −0.0065 (15) 0.0018 (15) −0.0037 (15)
C7 0.016 (2) 0.021 (2) 0.033 (2) 0.0013 (15) 0.0014 (16) −0.0035 (17)
C8 0.023 (2) 0.023 (2) 0.025 (2) −0.0025 (16) −0.0044 (16) −0.0014 (16)
C9 0.022 (2) 0.015 (2) 0.0239 (19) −0.0012 (15) −0.0022 (15) −0.0019 (15)
C10 0.022 (2) 0.022 (2) 0.026 (2) 0.0014 (16) 0.0010 (16) 0.0003 (16)
C11 0.023 (2) 0.023 (2) 0.0170 (18) −0.0011 (16) 0.0016 (15) −0.0021 (15)
C12 0.026 (2) 0.021 (2) 0.0212 (19) 0.0028 (16) −0.0063 (16) 0.0007 (16)
C13 0.019 (2) 0.025 (2) 0.023 (2) 0.0060 (16) −0.0012 (15) −0.0025 (16)
C14 0.020 (2) 0.020 (2) 0.0191 (18) −0.0048 (15) −0.0011 (15) −0.0034 (15)
C15 0.0205 (19) 0.022 (2) 0.0196 (19) 0.0039 (16) −0.0061 (15) 0.0010 (16)
C16 0.0134 (18) 0.024 (2) 0.0224 (19) −0.0006 (15) −0.0029 (15) −0.0050 (16)
C17 0.022 (2) 0.025 (2) 0.0207 (19) −0.0001 (16) −0.0018 (15) 0.0002 (16)
C18 0.025 (2) 0.031 (2) 0.0203 (19) 0.0025 (17) 0.0002 (16) 0.0029 (16)
C19 0.019 (2) 0.027 (2) 0.0175 (19) 0.0035 (15) 0.0036 (15) −0.0015 (16)
C20 0.026 (2) 0.034 (2) 0.032 (2) 0.0057 (18) 0.0025 (17) 0.0039 (19)
N1 0.0247 (18) 0.0214 (19) 0.0221 (17) −0.0012 (13) 0.0046 (13) −0.0022 (13)
N2 0.0211 (17) 0.0194 (17) 0.0277 (18) −0.0012 (13) −0.0012 (13) −0.0017 (14)
N3 0.0177 (17) 0.0266 (18) 0.0161 (15) 0.0078 (13) −0.0002 (12) 0.0001 (13)

Geometric parameters (Å, º)

C1—N1 1.377 (4) C12—C13 1.370 (5)
C1—C2 1.416 (5) C12—H12 0.9300
C1—C6 1.430 (5) C13—C14 1.408 (5)
C2—C3 1.368 (5) C13—H13 0.9300
C2—H2 0.9300 C14—N3 1.380 (4)
C3—C4 1.412 (5) C14—C15 1.410 (5)
C3—H3 0.9300 C15—C16 1.378 (5)
C4—C5 1.368 (5) C15—H15 0.9300
C4—H4 0.9300 C16—H16 0.9300
C5—C6 1.411 (5) C17—N3 1.452 (4)
C5—H5 0.9300 C17—C18 1.525 (5)
C6—C7 1.410 (5) C17—H17A 0.9700
C7—C8 1.365 (5) C17—H17B 0.9700
C7—H7 0.9300 C18—H18A 0.9600
C8—C9 1.416 (5) C18—H18B 0.9600
C8—H8 0.9300 C18—H18C 0.9600
C9—N1 1.336 (4) C19—N3 1.467 (4)
C9—C10 1.474 (5) C19—C20 1.519 (5)
C10—N2 1.278 (5) C19—H19A 0.9700
C10—H10 0.99 (3) C19—H19B 0.9700
C11—C12 1.396 (5) C20—H20A 0.9600
C11—C16 1.398 (5) C20—H20B 0.9600
C11—N2 1.413 (4) C20—H20C 0.9600
N1—C1—C2 118.3 (3) N3—C14—C13 121.7 (3)
N1—C1—C6 122.7 (3) N3—C14—C15 121.6 (3)
C2—C1—C6 119.0 (3) C13—C14—C15 116.8 (3)
C3—C2—C1 120.8 (3) C16—C15—C14 120.8 (3)
C3—C2—H2 119.6 C16—C15—H15 119.6
C1—C2—H2 119.6 C14—C15—H15 119.6
C2—C3—C4 120.2 (3) C15—C16—C11 122.1 (3)
C2—C3—H3 119.9 C15—C16—H16 119.0
C4—C3—H3 119.9 C11—C16—H16 119.0
C5—C4—C3 120.4 (3) N3—C17—C18 113.4 (3)
C5—C4—H4 119.8 N3—C17—H17A 108.9
C3—C4—H4 119.8 C18—C17—H17A 108.9
C4—C5—C6 121.0 (4) N3—C17—H17B 108.9
C4—C5—H5 119.5 C18—C17—H17B 108.9
C6—C5—H5 119.5 H17A—C17—H17B 107.7
C7—C6—C5 124.3 (3) C17—C18—H18A 109.5
C7—C6—C1 117.1 (3) C17—C18—H18B 109.5
C5—C6—C1 118.7 (3) H18A—C18—H18B 109.5
C8—C7—C6 120.5 (3) C17—C18—H18C 109.5
C8—C7—H7 119.8 H18A—C18—H18C 109.5
C6—C7—H7 119.8 H18B—C18—H18C 109.5
C7—C8—C9 118.6 (3) N3—C19—C20 113.6 (3)
C7—C8—H8 120.7 N3—C19—H19A 108.8
C9—C8—H8 120.7 C20—C19—H19A 108.8
N1—C9—C8 124.0 (3) N3—C19—H19B 108.8
N1—C9—C10 114.7 (3) C20—C19—H19B 108.8
C8—C9—C10 121.3 (3) H19A—C19—H19B 107.7
N2—C10—C9 120.5 (3) C19—C20—H20A 109.5
N2—C10—H10 127.2 (18) C19—C20—H20B 109.5
C9—C10—H10 112.2 (18) H20A—C20—H20B 109.5
C12—C11—C16 116.9 (3) C19—C20—H20C 109.5
C12—C11—N2 126.5 (3) H20A—C20—H20C 109.5
C16—C11—N2 116.5 (3) H20B—C20—H20C 109.5
C13—C12—C11 121.8 (3) C9—N1—C1 117.1 (3)
C13—C12—H12 119.1 C10—N2—C11 120.9 (3)
C11—C12—H12 119.1 C14—N3—C17 121.6 (3)
C12—C13—C14 121.6 (3) C14—N3—C19 121.6 (3)
C12—C13—H13 119.2 C17—N3—C19 116.3 (3)
C14—C13—H13 119.2
N1—C1—C2—C3 −180.0 (3) C12—C13—C14—C15 0.4 (5)
C6—C1—C2—C3 0.5 (5) N3—C14—C15—C16 −180.0 (3)
C1—C2—C3—C4 −0.7 (6) C13—C14—C15—C16 −0.7 (5)
C2—C3—C4—C5 0.4 (6) C14—C15—C16—C11 0.9 (5)
C3—C4—C5—C6 0.1 (6) C12—C11—C16—C15 −0.7 (5)
C4—C5—C6—C7 179.1 (3) N2—C11—C16—C15 178.5 (3)
C4—C5—C6—C1 −0.2 (5) C8—C9—N1—C1 0.4 (5)
N1—C1—C6—C7 1.1 (5) C10—C9—N1—C1 178.8 (3)
C2—C1—C6—C7 −179.5 (3) C2—C1—N1—C9 179.0 (3)
N1—C1—C6—C5 −179.5 (3) C6—C1—N1—C9 −1.6 (5)
C2—C1—C6—C5 −0.1 (5) C9—C10—N2—C11 178.9 (3)
C5—C6—C7—C8 −178.7 (3) C12—C11—N2—C10 13.1 (6)
C1—C6—C7—C8 0.6 (5) C16—C11—N2—C10 −166.1 (3)
C6—C7—C8—C9 −1.8 (5) C13—C14—N3—C17 −177.7 (3)
C7—C8—C9—N1 1.3 (5) C15—C14—N3—C17 1.5 (5)
C7—C8—C9—C10 −177.1 (3) C13—C14—N3—C19 11.2 (5)
N1—C9—C10—N2 177.1 (3) C15—C14—N3—C19 −169.6 (3)
C8—C9—C10—N2 −4.5 (5) C18—C17—N3—C14 −79.2 (4)
C16—C11—C12—C13 0.4 (5) C18—C17—N3—C19 92.3 (4)
N2—C11—C12—C13 −178.8 (3) C20—C19—N3—C14 −94.8 (4)
C11—C12—C13—C14 −0.2 (6) C20—C19—N3—C17 93.7 (4)
C12—C13—C14—N3 179.6 (3)

Hydrogen-bond geometry (Å, º)

Cg1, Cg2 and Cg3 are the centroids of the N1/C1/C6–C9, C1–C16 and C11–C16 rings, respectively.

D—H···A D—H H···A D···A D—H···A
C5—H5···Cg2i 0.93 2.99 3.705 (5) 135
C7—H7···Cg1i 0.93 2.90 3.612 (5) 135
C13—H13···Cg3ii 0.93 2.84 3.588 (5) 138
C15—H15···Cg2iii 0.93 2.89 3.686 (5) 145
C18—H18A···Cg1iii 0.96 2.95 3.625 (5) 128

Symmetry codes: (i) −x+1/2, y+1/2, z; (ii) −x+1, y−1/2, −z−1/2; (iii) x, −y+1/2, z−1/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: HG5416).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  2. Brandenberg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  3. Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Das, P., Mandal, A. K., Reddy, G. U., Baidya, M., Ghosh, S. K. & Das, A. (2013). Org. Biomol. Chem. 11, 6604–6614. [DOI] [PubMed]
  5. Faizi, M. S. H. & Hussain, S. (2014). Acta Cryst. E70, m197. [DOI] [PMC free article] [PubMed]
  6. Faizi, M. S. H., Mashrai, A., Shahid, M. & Ahmad, M. (2014). Acta Cryst. E70, o806. [DOI] [PMC free article] [PubMed]
  7. Faizi, M. S. H. & Sen, P. (2014). Acta Cryst. E70, m173. [DOI] [PMC free article] [PubMed]
  8. Gonzalez, M. A., Carrington, S. J., Fry, N. L., Martinez, J. L. & Mascharak, P. K. (2012). Inorg. Chem. 51, 11930–11940. [DOI] [PubMed]
  9. Jursic, B. S., Douelle, F., Bowdy, K. & Stevens, E. D. (2002). Tetrahedron Lett. 43, 5361–5365.
  10. Motswainyana, W. M., Onani, M. O., Madiehe, A. M., Saibu, M., Jacobs, J. & van Meervelt, L. (2013). Inorg. Chim. Acta, 400, 197–202.
  11. Patra, G. K. & Goldberg, I. (2003). New J. Chem. 27, 1124–1131.
  12. Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.
  13. Sheldrick, G. M. (2008b). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Song, S., Zhao, W., Wang, L., Redshaw, C., Wang, F. & Sun, W.-H. (2011). J. Organomet. Chem. 696, 3029–3035.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989014027108/hg5416sup1.cif

e-71-00o49-sup1.cif (24.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989014027108/hg5416Isup2.hkl

e-71-00o49-Isup2.hkl (141.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989014027108/hg5416Isup3.cml

. DOI: 10.1107/S2056989014027108/hg5416fig1.tif

The mol­ecular conformation and atom-numbering scheme for the title compound, with non-H atoms drawn as 40% probability displacement ellipsoids.

a . DOI: 10.1107/S2056989014027108/hg5416fig2.tif

The mol­ecular packing viewed along the a direction.

CCDC reference: 1038674

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES