Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1974 Sep;71(9):3367–3371. doi: 10.1073/pnas.71.9.3367

Interactions of a Photo-Affinity ATP Analog with Cation-Stimulated Adenosine Triphosphatases of Human Red Cell Membranes

Boyd E Haley 1,*, Joseph F Hoffman 1
PMCID: PMC433773  PMID: 4279407

Abstract

To identify and isolate ATP binding and hydrolyzing sites of human red cell membranes we have synthesized a photo-activated ATP analog, 8-azido adenosine triphosphate (N3ATP). In the absence of ultraviolet light it is a substrate for both the Mg-ATPase and the ouabain-sensitive, Na,K-ATPase. Hydrolysis of N3ATP is prevented by increasing concentrations of ATP. Photolysis of N3ATP with red cell membranes results in covalent incorporation and irreversible inhibition of both ATPase activities. Also, only three protein components of the red cell membranes are labeled. This labeling is completely abolished by appropriate concentrations of ATP.

Keywords: Na,K-ATPase; red cell ghosts; membrane probe

Full text

PDF
3370

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Avruch J., Fairbanks G. Demonstration of a phosphopeptide intermediate in the Mg ++ -dependent, Na + - and K + -stimulated adenosine triphosphatase reaction of the erythrocyte membrane. Proc Natl Acad Sci U S A. 1972 May;69(5):1216–1220. doi: 10.1073/pnas.69.5.1216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blake A., Leader D. P., Whittam R. Physical and chemical reactions of phosphates in red cell membranes in relation to active transport. J Physiol. 1967 Nov;193(2):467–479. doi: 10.1113/jphysiol.1967.sp008372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brunswick D. J., Cooperman B. S. Photo-affinity labels for adenosine 3':5'-cyclic monophosphate. Proc Natl Acad Sci U S A. 1971 Aug;68(8):1801–1804. doi: 10.1073/pnas.68.8.1801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chau-Wong M., Seeman P. The control of membrane-bound Ca 2+ by ATP. Biochim Biophys Acta. 1971 Aug 13;241(2):473–482. doi: 10.1016/0005-2736(71)90046-0. [DOI] [PubMed] [Google Scholar]
  5. Converse C. A., Richards F. F. Two-stage photosensitive label for antibody combining sites. Biochemistry. 1969 Nov;8(11):4431–4436. doi: 10.1021/bi00839a031. [DOI] [PubMed] [Google Scholar]
  6. Fairbanks G., Steck T. L., Wallach D. F. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry. 1971 Jun 22;10(13):2606–2617. doi: 10.1021/bi00789a030. [DOI] [PubMed] [Google Scholar]
  7. Guthrow C. E., Jr, Allen J. E., Rasmussen H. Phosphorylation of an endogenous membrane protein by an endogenous, membrane-associated cyclic adenosine 3',5'-monophosphate-dependent protein kinase in human erythrocyte ghosts. J Biol Chem. 1972 Dec 25;247(24):8145–8153. [PubMed] [Google Scholar]
  8. Guthrow C. E., Rasmussen H., Brunswick D. J., Cooperman B. S. Specific photoaffinity labeling of the adenosine 3':5'-cyclic monophosphate receptor in intact ghosts from human erythrocytes. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3344–3346. doi: 10.1073/pnas.70.12.3344. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. HEINZ E., HOFFMAN J. F. PHOSPHATE INCORPORATION AND NA, K-ATPASE ACTIVITY IN HUMAN RED BLOOD CELL GHOSTS. J Cell Physiol. 1965 Feb;65:31–43. doi: 10.1002/jcp.1030650106. [DOI] [PubMed] [Google Scholar]
  10. Kiefer H., Lindstrom J., Lennox E. S., Singer S. J. Photo-affinity labeling of specific acetylcholine-binding sites on membranes. Proc Natl Acad Sci U S A. 1970 Dec;67(4):1688–1694. doi: 10.1073/pnas.67.4.1688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Knauf P. A., Proverbio F., Hoffman J. F. Chemical characterization and pronase susceptibility of the Na:K pump-associated phosphoprotein of human red blood cells. J Gen Physiol. 1974 Mar;63(3):305–323. doi: 10.1085/jgp.63.3.305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. MICHELSON A. M. SYNTHESIS OF NUCLEOTIDE ANHYDRIDES BY ANION EXCHANGE. Biochim Biophys Acta. 1964 Sep 11;91:1–13. doi: 10.1016/0926-6550(64)90164-1. [DOI] [PubMed] [Google Scholar]
  13. Muneyama K., Bauer R. J., Shuman D. A., Robins R. K., Simon L. N. Chemical synthesis and biological activity of 8-substituted adenosine 3',5'-cyclic monophosphate derivatives. Biochemistry. 1971 Jun 8;10(12):2390–2395. doi: 10.1021/bi00788a033. [DOI] [PubMed] [Google Scholar]
  14. Robinson J. D. Kinetic studies on a brain microsomal adenosine triphosphatase. Evidence suggesting conformational changes. Biochemistry. 1967 Oct;6(10):3250–3258. doi: 10.1021/bi00862a034. [DOI] [PubMed] [Google Scholar]
  15. Rosenthal A. S., Kregenow F. M., Moses H. L. Some characteristics of a Ca2+ dependent ATPase activity associated with a group of erythrocyte membrane proteins which form fibrils. Biochim Biophys Acta. 1970;196(2):254–262. doi: 10.1016/0005-2736(70)90013-1. [DOI] [PubMed] [Google Scholar]
  16. Rubin C. S., Rosen O. M. The role of cyclic AMP in the phosphorylation of proteins in human erythrocyte membranes. Biochem Biophys Res Commun. 1973 Jan 23;50(2):421–429. doi: 10.1016/0006-291x(73)90857-7. [DOI] [PubMed] [Google Scholar]
  17. Ruoho A. E., Kiefer H., Roeder P. E., Singer S. J. The mechanism of photoaffinity labeling. Proc Natl Acad Sci U S A. 1973 Sep;70(9):2567–2571. doi: 10.1073/pnas.70.9.2567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. SINGH A., THORNTON E. R., WESTHEIMER F. H. The photolysis of diazoacetylchymotrypsin. J Biol Chem. 1962 Sep;237:3006–3008. [PubMed] [Google Scholar]
  19. Shafer J., Baronowsky P., Laursen R., Finn F., Westheimer F. H. Products from the photolysis of diazoacetyl chymotrypsin. J Biol Chem. 1966 Jan 25;241(2):421–427. [PubMed] [Google Scholar]
  20. Vaughan R. J., Westheimer F. H. A method for marking the hydrophobic binding sites of enzymes. An insertion into the methyl group of an alanine residue of trypsin. J Am Chem Soc. 1969 Jan 1;91(1):217–218. doi: 10.1021/ja01029a055. [DOI] [PubMed] [Google Scholar]
  21. Walz F. G., Jr, Chan P. C. Effects of cysteine and potassium on the ATP-dependent retention of sodium ions by erythrocyte membranes. Biochim Biophys Acta. 1967;135(5):885–893. doi: 10.1016/0005-2736(67)90057-0. [DOI] [PubMed] [Google Scholar]
  22. White W. E., Jr, Yielding K. L. Labeling of the active site of glutamate dehydrogenase with a photogenerated species. Biochem Biophys Res Commun. 1973 Jun 19;52(4):1129–1133. doi: 10.1016/0006-291x(73)90617-7. [DOI] [PubMed] [Google Scholar]
  23. Williams R. O. The phosphorylation and isolation of two erythrocyte membrane proteins in vitro. Biochem Biophys Res Commun. 1972 May 26;47(4):671–678. doi: 10.1016/0006-291x(72)90544-x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES