Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1974 Nov;71(11):4425–4428. doi: 10.1073/pnas.71.11.4425

A Novel Form of RNA Polymerase from Escherichia coli

William Wickner 1, Arthur Kornberg 1
PMCID: PMC433898  PMID: 4612517

Abstract

A new form of RNA polymerase, termed RNA polymerase III, has been recognized as a large fraction of the rifampicin-sensitive enzyme in E. coli. It is physically separable from RNA polymerase (holoenzyme, RNA polymerase I) by gel filtration and is distinguished by its capacity to discriminate between M13 and ϕX174 viral DNA templates in priming DNA synthesis. This template specificity is manifested only with saturating levels of DNA unwinding protein and characterizes the priming of DNA synthesis on viral single strands in cell-free extracts and in vivo. RNA polymerase III has less than 5% of the specific activity of RNA polymerase I in transcribing duplex DNA of phages λ and T4, salmon sperm DNA, and the copolymer poly[d(A-T)]. Rifampicin inactivation of RNA polymerase III releases a factor, presumably a small subunit, which can be isolated and used to confer on RNA polymerase I the properties of III, namely, discrimination between M13 and ϕX174 templates in priming DNA synthesis, and a relative inability to transcribe duplex DNA.

Keywords: M13/ϕX174, rifampicin

Full text

PDF
4427

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Babinet C. A new method for the purification of RNA-polymerase. Biochem Biophys Res Commun. 1967 Mar 21;26(6):639–644. doi: 10.1016/s0006-291x(67)80119-0. [DOI] [PubMed] [Google Scholar]
  2. Brutlag D., Schekman R., Kornberg A. A possible role for RNA polymerase in the initiation of M13 DNA synthesis. Proc Natl Acad Sci U S A. 1971 Nov;68(11):2826–2829. doi: 10.1073/pnas.68.11.2826. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chao L., Speyer J. F. A new form of RNA polymerase isolated from Escherichia coli. Biochem Biophys Res Commun. 1973 Mar 17;51(2):399–405. doi: 10.1016/0006-291x(73)91271-0. [DOI] [PubMed] [Google Scholar]
  4. Dharmgrongartama B., Mahadik S. P., Srinivasan P. R. Modification of RNA polymerase after T3 phage infection of Escherichia coli B. Proc Natl Acad Sci U S A. 1973 Oct;70(10):2845–2849. doi: 10.1073/pnas.70.10.2845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fukuda R., Iwakura Y., Ishihama A. Heterogeneity of RNA polymerase in Escherichia coli. I. A new holoenzyme containing a new sigma factor. J Mol Biol. 1974 Mar;83(3):353–367. doi: 10.1016/0022-2836(74)90284-8. [DOI] [PubMed] [Google Scholar]
  6. Geider K., Kornberg A. Conversion of the M13 viral single strand to the double-stranded replicative forms by purified proteins. J Biol Chem. 1974 Jul 10;249(13):3999–4005. [PubMed] [Google Scholar]
  7. Hurwitz J., Wickner S., Wright M. Studies on in vitro DNA synthesis. II. Isolation of a protein which stimulates deoxynucleotide incorporation catalyzed by DNA polymerase of E. coli. Biochem Biophys Res Commun. 1973 Mar 17;51(2):257–267. doi: 10.1016/0006-291x(73)91251-5. [DOI] [PubMed] [Google Scholar]
  8. Jovin T. M., Englund P. T., Bertsch L. L. Enzymatic synthesis of deoxyribonucleic acid. XXVI. Physical and chemical studies of a homogeneous deoxyribonucleic acid polymerase. J Biol Chem. 1969 Jun 10;244(11):2996–3008. [PubMed] [Google Scholar]
  9. Schekman R., Wickner W., Westergaard O., Brutlag D., Geider K., Bertsch L. L., Kornberg A. Initiation of DNA synthesis: synthesis of phiX174 replicative form requires RNA synthesis resistant to rifampicin. Proc Natl Acad Sci U S A. 1972 Sep;69(9):2691–2695. doi: 10.1073/pnas.69.9.2691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Sigal N., Delius H., Kornberg T., Gefter M. L., Alberts B. A DNA-unwinding protein isolated from Escherichia coli: its interaction with DNA and with DNA polymerases. Proc Natl Acad Sci U S A. 1972 Dec;69(12):3537–3541. doi: 10.1073/pnas.69.12.3537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Silverstein S., Billen D. Transcription: role in the initiation and replication of DNA synthesis in Escherichia coli and phiX174. Biochim Biophys Acta. 1971 Oct;247(3):383–390. doi: 10.1016/0005-2787(71)90023-2. [DOI] [PubMed] [Google Scholar]
  12. Spiegelman G. B., Whiteley H. R. Purification of ribonucleic acid polymerase from SP82-infected Bacillus subtilis. J Biol Chem. 1974 Mar 10;249(5):1476–1482. [PubMed] [Google Scholar]
  13. Wickner R. B., Wright M., Wickner S., Hurwitz J. Conversion of phiX174 and fd single-stranded DNA to replicative forms in extracts of Escherichia coli. Proc Natl Acad Sci U S A. 1972 Nov;69(11):3233–3237. doi: 10.1073/pnas.69.11.3233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Wickner W., Brutlag D., Schekman R., Kornberg A. RNA synthesis initiates in vitro conversion of M13 DNA to its replicative form. Proc Natl Acad Sci U S A. 1972 Apr;69(4):965–969. doi: 10.1073/pnas.69.4.965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Wickner W., Schekman R., Geider K., Kornberg A. A new form of DNA polymerase 3 and a copolymerase replicate a long, single-stranded primer-template. Proc Natl Acad Sci U S A. 1973 Jun;70(6):1764–1767. doi: 10.1073/pnas.70.6.1764. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES