Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1974 Dec;71(12):4747–4751. doi: 10.1073/pnas.71.12.4747

Does RNA Pass from Mesenchyme to Epithelium During an Embryonic Tissue Interaction?

Robert M Grainger *,, Norman K Wessells
PMCID: PMC433973  PMID: 4531014

Abstract

Chick and mouse embryonic lung mesenchyme were incubated in vitro with an equimolar mixture of 12C- and 15N-labeled adenosine, guanosine, cytidine, and uridine, and trace amounts of the four tritiated ribonucleosides. This permits an unambiguous method for detecting transfer of macromolecular RNA from such a pre-incubated mesenchyme to responding lung epithelium across a Millipore filter, and for purifying any RNA transferred for further characterization. During the important period of mesenchymal support of epithelial morphogenesis, no detectable transfer of RNA was found. The level of sensitivity of these experiments was such that less than 0.01% of the labeled RNA in the mesenchyme could have been detected in the epithelium, corresponding to less than 75 labeled RNA molecules transferred to each epithelial cell. No detectable transfer of DNA from mesenchyme to epithelium was found during the inductive period, using the same approach, although with much lower sensitivity.

Keywords: RNA density labeling, equilibrium centrifugation

Full text

PDF
4747

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALESCIO T., CASSINI A. Induction in vitro of tracheal buds by pulmonary mesenchyme grafted on tracheal epithelium. J Exp Zool. 1962 Jul;150:83–94. doi: 10.1002/jez.1401500202. [DOI] [PubMed] [Google Scholar]
  2. Anstine W., Jacobsen J. V., Scandalios J. G., Varner J. E. Deuterium oxide as a density label of peroxidases in germinating barley embryos. Plant Physiol. 1970 Feb;45(2):148–152. doi: 10.1104/pp.45.2.148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bhargava P. M., Shanmugam G. Uptake of nonviral nucleic acids by mammalian cells. Prog Nucleic Acid Res Mol Biol. 1971;11:103–192. doi: 10.1016/s0079-6603(08)60327-x. [DOI] [PubMed] [Google Scholar]
  4. Darnell J. E., Jr Ribonucleic acids from animal cells. Bacteriol Rev. 1968 Sep;32(3):262–290. doi: 10.1128/br.32.3.262-290.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ellison M. L., Lash J. W. Environmental enhancement of in vitro chondrogenesis. Dev Biol. 1971 Nov;26(3):486–496. doi: 10.1016/0012-1606(71)90078-9. [DOI] [PubMed] [Google Scholar]
  6. Filner P., Varner J. E. A test for de novo synthesis of enzymes: density labeling with H2O18 of barley alpha-amylase induced by gibberellic acid. Proc Natl Acad Sci U S A. 1967 Oct;58(4):1520–1526. doi: 10.1073/pnas.58.4.1520. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hinegardner R. T. An improved fluorometric assay for DNA. Anal Biochem. 1971 Jan;39(1):197–201. doi: 10.1016/0003-2697(71)90476-3. [DOI] [PubMed] [Google Scholar]
  8. Kolodny G. M. Evidence for transfer of macromolecular RNA between mammalian cells in culture. Exp Cell Res. 1971 Apr;65(2):313–324. doi: 10.1016/0014-4827(71)90007-3. [DOI] [PubMed] [Google Scholar]
  9. Kung C. S. On the size relationship between nuclear and cytoplasmic RNA in sea urchin embryos. Dev Biol. 1974 Feb;36(2):343–356. doi: 10.1016/0012-1606(74)90056-6. [DOI] [PubMed] [Google Scholar]
  10. Levine S., Pictet R., Rutter W. J. Control of cell proliferation and cytodifferentiation by a factor reacting with the cell surface. Nat New Biol. 1973 Nov 14;246(150):49–52. doi: 10.1038/newbio246049a0. [DOI] [PubMed] [Google Scholar]
  11. Meselson M., Stahl F. W. THE REPLICATION OF DNA IN ESCHERICHIA COLI. Proc Natl Acad Sci U S A. 1958 Jul 15;44(7):671–682. doi: 10.1073/pnas.44.7.671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mizuno T. Lens differentiation in vitro in the absence of optic vesicle in the epiblast of chick blastoderm under the influence of skin dermis. J Embryol Exp Morphol. 1972 Aug;28(1):117–132. [PubMed] [Google Scholar]
  13. Niu M. C., Deshpande A. K. The development of tubular heart in RNA-treated post-nodal pieces of chick blastoderm. J Embryol Exp Morphol. 1973 Apr;29(2):485–501. [PubMed] [Google Scholar]
  14. Spooner B. S., Wessells N. K. Mammalian lung development: interactions in primordium formation and bronchial morphogenesis. J Exp Zool. 1970 Dec;175(4):445–454. doi: 10.1002/jez.1401750404. [DOI] [PubMed] [Google Scholar]
  15. Taderera J. V. Control of lung differentiation in vitro. Dev Biol. 1967 Nov;16(5):489–512. doi: 10.1016/0012-1606(67)90061-9. [DOI] [PubMed] [Google Scholar]
  16. VINOGRAD J., HEARST J. E. Equilibrium sedimentation of macromolecules and viruses in a density gradient. Fortschr Chem Org Naturst. 1962;20:373–422. [PubMed] [Google Scholar]
  17. Wessells N. K., Cohen J. H. Effects of collagenase on developing epithelia in vitro: lung, ureteric bud, and pancreas. Dev Biol. 1968 Sep;18(3):294–309. doi: 10.1016/0012-1606(68)90037-7. [DOI] [PubMed] [Google Scholar]
  18. Wessells N. K. Mammalian lung development: interactions in formation and morphogenesis of tracheal buds. J Exp Zool. 1970 Dec;175(4):455–466. doi: 10.1002/jez.1401750405. [DOI] [PubMed] [Google Scholar]
  19. Wilt F. H. Polyadenylation of maternal RNA of sea urchin eggs after fertilization. Proc Natl Acad Sci U S A. 1973 Aug;70(8):2345–2349. doi: 10.1073/pnas.70.8.2345. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES