Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1974 Oct;71(10):4135–4139. doi: 10.1073/pnas.71.10.4135

Kinetic Proofreading: A New Mechanism for Reducing Errors in Biosynthetic Processes Requiring High Specificity

J J Hopfield 1,2
PMCID: PMC434344  PMID: 4530290

Abstract

The specificity with which the genetic code is read in protein synthesis, and with which other highly specific biosynthetic reactions take place, can be increased above the level available from free energy differences in intermediates or kinetic barriers by a process defined here as kinetic proofreading. A simple kinetic pathway is described which results in this proofreading when the reaction is strongly but nonspecifically driven, e.g., by phosphate hydrolysis. Protein synthesis, amino acid recognition, and DNA replication, all exhibit the features of this model. In each case, known reactions which otherwise appear to be useless or deleterious complications are seen to be essential to the proofreading function.

Keywords: protein synthesis, DNA replication, amino-acid recognition

Full text

PDF
4139

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baldwin A. N., Berg P. Transfer ribonucleic acid-induced hydrolysis of valyladenylate bound to isoleucyl ribonucleic acid synthetase. J Biol Chem. 1966 Feb 25;241(4):839–845. [PubMed] [Google Scholar]
  2. Blanquet S., Fayat G., Waller J. P., Iwatsubo M. The mechanism of reaction of methionyl-tRNA synthetase from Escherichia coli. Interaction of the enzyme with ligands of the amino-acid-activation reaction. Eur J Biochem. 1972 Jan 21;24(3):461–469. doi: 10.1111/j.1432-1033.1972.tb19707.x. [DOI] [PubMed] [Google Scholar]
  3. Brutlag D., Kornberg A. Enzymatic synthesis of deoxyribonucleic acid. 36. A proofreading function for the 3' leads to 5' exonuclease activity in deoxyribonucleic acid polymerases. J Biol Chem. 1972 Jan 10;247(1):241–248. [PubMed] [Google Scholar]
  4. Craig M. E., Crothers D. M., Doty P. Relaxation kinetics of dimer formation by self complementary oligonucleotides. J Mol Biol. 1971 Dec 14;62(2):383–401. doi: 10.1016/0022-2836(71)90434-7. [DOI] [PubMed] [Google Scholar]
  5. Goulian M., Lucas Z. J., Kornberg A. Enzymatic synthesis of deoxyribonucleic acid. XXV. Purification and properties of deoxyribonucleic acid polymerase induced by infection with phage T4. J Biol Chem. 1968 Feb 10;243(3):627–638. [PubMed] [Google Scholar]
  6. Kimura M., Ohta T. Mutation and evolution at the molecular level. Genetics. 1973 Apr;73(Suppl):19–35. [PubMed] [Google Scholar]
  7. Loftfield R. B., Eigner E. A. The specificity of enzymic reactions. Aminoacyl-soluble RNA ligases. Biochim Biophys Acta. 1966 Dec 28;130(2):426–448. doi: 10.1016/0304-4165(66)90239-x. [DOI] [PubMed] [Google Scholar]
  8. Loftfield R. B. The mechanism of aminoacylation of transfer RNA. Prog Nucleic Acid Res Mol Biol. 1972;12:87–128. doi: 10.1016/s0079-6603(08)60660-1. [DOI] [PubMed] [Google Scholar]
  9. Lucas-Lenard J. Protein biosynthesis. Annu Rev Biochem. 1971;40:409–448. doi: 10.1146/annurev.bi.40.070171.002205. [DOI] [PubMed] [Google Scholar]
  10. Muzyczka N., Poland R. L., Bessman M. J. Studies on the biochemical basis of spontaneous mutation. I. A comparison of the deoxyribonucleic acid polymerases of mutator, antimutator, and wild type strains of bacteriophage T4. J Biol Chem. 1972 Nov 25;247(22):7116–7122. [PubMed] [Google Scholar]
  11. NIRENBERG M. W., MATTHAEI J. H. The dependence of cell-free protein synthesis in E. coli upon naturally occurring or synthetic polyribonucleotides. Proc Natl Acad Sci U S A. 1961 Oct 15;47:1588–1602. doi: 10.1073/pnas.47.10.1588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. NIRENBERG M., LEDER P. RNA CODEWORDS AND PROTEIN SYNTHESIS. THE EFFECT OF TRINUCLEOTIDES UPON THE BINDING OF SRNA TO RIBOSOMES. Science. 1964 Sep 25;145(3639):1399–1407. doi: 10.1126/science.145.3639.1399. [DOI] [PubMed] [Google Scholar]
  13. Ninio J. A semi-quantitative treatment of missense and nonsense suppression in the strA and ram ribosomal mutants of Escherichia coli. Evaluation of some molecular parameters of translation in vivo. J Mol Biol. 1974 Apr 5;84(2):297–313. doi: 10.1016/0022-2836(74)90586-5. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES