Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1976 Feb;57(2):256–263. doi: 10.1172/JCI108276

Evidence for a parathyroid hormone-independent calcium modulation of phosphate transport along the nephron.

C Amiel, H Kuntziger, S Couette, C Coureau, N Bergounioux
PMCID: PMC436649  PMID: 176176

Abstract

To disclose a parathyroid-independent calcium modulation of phosphate transport along the nephron, the effect of increasing plasma calcium concentration to subnormal levels in rats 6 days after parathyroidectomy (chronic PTX) was studied. Fractional phosphate reabsorption was significantly increased. The whole kidney response to calcium infusion was similar whether or not the thyroid gland was removed, which suggests that calcitonin is not involved. The micropuncture study indicated an increase in the reabsorptive capacity for phosphate (absolute reabsorption/absolute delivered phosphate per nephron segment) in the proximal tubule, the loop, and the terminal nephron when calcium was infused. Thus, the level of plasma calcium or some related factor affects the phosphate transport by the tubule independently of parathyroid hormone. With calcium infusion, the profile of phosphate reabsorption along the nephron became close to that of acutely parathyroidectomized rats, but with persisting differences. The level of plasma calcium concentration may partly account for the differences between the acute and the chronic steps of parathyroidectomy. The role of possible interferences between alterations of extracellular calcium concentration or some related factor and the adenylate cyclase-cyclic AMP system in such an action of calcium was evaluated. Cyclic AMP was infused so as to achieve a 10(-6) M plasma concentration. Combined infusions of calcium and cyclic AMP were also performed. The results are compatible with calcium inhibition of adenylate cyclase, although they do not rule out a direct action of calcium.

Full text

PDF
257

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agus Z. S., Puschett J. B., Senesky D., Goldberg M. Mode of action of parathyroid hormone and cyclic adenosine 3',5'-monophosphate on renal tubular phosphate reabsorption in the dog. J Clin Invest. 1971 Mar;50(3):617–626. doi: 10.1172/JCI106532. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Amiel C., Kuntziger H., Richet G. Micropuncture study of handling of phosphate by proximal and distal nephron in normal and parathyroidectomized rat. Evidence for distal reabsorption. Pflugers Arch. 1970;317(2):93–109. doi: 10.1007/BF00592495. [DOI] [PubMed] [Google Scholar]
  3. Beck N., Singh H., Reed S. W., Davis B. B. Direct inhibitory effect of hypercalcemia on renal actions of parathyroid hormone. J Clin Invest. 1974 Mar;53(3):717–725. doi: 10.1172/JCI107610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Butlen D., Jard S. Renal handling of 3'-5'-cyclic AMP in the rat. The possible role of luminal 3'-5'-cyclic AMP in the tubular reabsorption of phosphate. Pflugers Arch. 1972;331(2):172–190. doi: 10.1007/BF00587260. [DOI] [PubMed] [Google Scholar]
  5. Chase L. R., Aurbach G. D. Parathyroid function and the renal excretion of 3'5'-adenylic acid. Proc Natl Acad Sci U S A. 1967 Aug;58(2):518–525. doi: 10.1073/pnas.58.2.518. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Coulson R., Bowman R. H. Excretion and degradation of exogenous adenosine 3',5'-monophosphate by isolated perfused rat kidney. Life Sci. 1974 Feb 1;14(3):545–566. doi: 10.1016/0024-3205(74)90369-5. [DOI] [PubMed] [Google Scholar]
  7. EISENBERG E. EFFECTS OF SERUM CALCIUM LEVEL AND PARATHYROID EXTRACTS ON PHOSPHATE AND CALCIUM EXCRETION IN HYPOPARATHYROID PATIENTS. J Clin Invest. 1965 Jun;44:942–946. doi: 10.1172/JCI105211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gilman A. G. A protein binding assay for adenosine 3':5'-cyclic monophosphate. Proc Natl Acad Sci U S A. 1970 Sep;67(1):305–312. doi: 10.1073/pnas.67.1.305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Glorieux F., Scriver C. R. Loss of a parathyroid hormone-sensitive component of phosphate transport in X-linked hypophosphatemia. Science. 1972 Mar 3;175(4025):997–1000. doi: 10.1126/science.175.4025.997. [DOI] [PubMed] [Google Scholar]
  10. Gradowska L., Caglar S., Rutherford E., Harter H., Slatopolsky E. On the mechanism of the phosphaturia of extracellular fluid volume expansion in the dog. Kidney Int. 1973 Apr;3(4):230–237. doi: 10.1038/ki.1973.36. [DOI] [PubMed] [Google Scholar]
  11. Jakobs K. H., Schultz K., Schultz G. Hemmung von adenyl-Cyclase-Präparationen aus der Rattenniere durch Calciumionen und verschiedene Diuretica. Naunyn Schmiedebergs Arch Pharmacol. 1972;273(3):248–266. doi: 10.1007/BF00501417. [DOI] [PubMed] [Google Scholar]
  12. Kuntziger H., Amiel C., Roinel N., Morel F. Effects of parathyroidectomy and cyclic AMP on renal transport of phosphate, calcium, and magnesium. Am J Physiol. 1974 Oct;227(4):905–911. doi: 10.1152/ajplegacy.1974.227.4.905. [DOI] [PubMed] [Google Scholar]
  13. Kuntziger H., Antonetti A., Couette S., Coureau C., Amiel C. Ultramicro (nanoliter range) determination of calcium concentration (10-3 M) by atomic absorption. Anal Biochem. 1974 Aug;60(2):449–454. doi: 10.1016/0003-2697(74)90254-1. [DOI] [PubMed] [Google Scholar]
  14. Lavender A. R., Pullman T. N. Changes in inorganic phosphate excretion induced by renal arterial infusion of calcium. Am J Physiol. 1963 Nov;205(5):1025–1032. doi: 10.1152/ajplegacy.1963.205.5.1025. [DOI] [PubMed] [Google Scholar]
  15. Lechène C., Morel F., Guinnebault M., De Rouffignac C. Etude par microponction de l'élaboration de l'urine. I. Chez le rat dans différents états de diurèse. Nephron. 1969;6(4):457–477. doi: 10.1159/000179745. [DOI] [PubMed] [Google Scholar]
  16. Marcus R., Aurbach G. D. Adenyl cyclase from renal cortex. Biochim Biophys Acta. 1971 Aug 20;242(2):410–421. doi: 10.1016/0005-2744(71)90232-4. [DOI] [PubMed] [Google Scholar]
  17. Morel F., Roinel N., Le Grimellec C. Electron probe analysis of tubular fluid composition. Nephron. 1969;6(3):350–364. doi: 10.1159/000179738. [DOI] [PubMed] [Google Scholar]
  18. Nagata N., Rasmussen H. Parathyroid hormone, 3'5' AMP, Ca++, and renal gluconeogenesis. Proc Natl Acad Sci U S A. 1970 Feb;65(2):368–374. doi: 10.1073/pnas.65.2.368. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Pak C. Y. Parathyroid hormone and thyrocalcitonin: their mode of action and regulation. Ann N Y Acad Sci. 1971 Jul 6;179:450–474. doi: 10.1111/j.1749-6632.1971.tb46922.x. [DOI] [PubMed] [Google Scholar]
  20. Popovtzer M. M., Robinette J. B., DeLuca H. F., Holick M. F. The acute effect of 25-hydroxycholecalciferol on renal handling of phosphorus. Evidence for a parathyroid hormone-dependent mechanism. J Clin Invest. 1974 Mar;53(3):913–921. doi: 10.1172/JCI107632. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Puschett J. B., Fernandez P. C., Boyle I. T., Gray R. W., Omdahl J. L., DeLuca H. F. The acute renal tubular effects of 1,25-dihydroxycholecalciferol. Proc Soc Exp Biol Med. 1972 Oct;141(1):379–384. doi: 10.3181/00379727-141-36781. [DOI] [PubMed] [Google Scholar]
  22. Puschett J. B., Moranz J., Kurnick W. S. Evidence for a direct action of cholecalciferol and 25-hydroxycholecalciferol on the renal transport of phosphate, sodium, and calcium. J Clin Invest. 1972 Feb;51(2):373–385. doi: 10.1172/JCI106823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rabinowitz B., Katz J. Method for determination of cyclic AMP in plasma. Clin Chem. 1973 Mar;19(3):312–314. [PubMed] [Google Scholar]
  24. Rasmussen H., Anast C., Arnaud C. Thyrocalcitonin, EGTA, and urinary electrolyte excretion. J Clin Invest. 1967 May;46(5):746–752. doi: 10.1172/JCI105575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rasmussen H. Ionic and hormonal control of calcium homeostasis. Am J Med. 1971 May;50(5):567–588. doi: 10.1016/0002-9343(71)90113-6. [DOI] [PubMed] [Google Scholar]
  26. Rasmussen H., Pechet M., Fast D. Effect of dibutyryl cyclic adenosine 3',5'-monophosphate, theophylline, and other nucleotides upon calcium and phosphate metabolism. J Clin Invest. 1968 Aug;47(8):1843–1850. doi: 10.1172/JCI105874. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Russell R. G., Casey P. A., Fleisch H. Simulation of phosphate excretion by the renal arterial infusion of 3'5'-AMP (cyclic AMP)-a possible mechanism of action of parathyroid hormone. Calcif Tissue Res. 1968;(Suppl):54–54a. doi: 10.1007/BF02065236. [DOI] [PubMed] [Google Scholar]
  28. Sherwood L. M., Mayer G. P., Ramberg C. F., Jr, Kronfeld D. S., Aurbach G. D., Potts J. T., Jr Regulation of parathyroid hormone secretion: proportional control by calcium, lack of effect of phosphate. Endocrinology. 1968 Nov;83(5):1043–1051. doi: 10.1210/endo-83-5-1043. [DOI] [PubMed] [Google Scholar]
  29. Streeto J. M. Renal cortical adenyl cyclase: effect of parathyroid hormone and calcium. Metabolism. 1969 Nov;18(11):968–973. doi: 10.1016/0026-0495(69)90037-7. [DOI] [PubMed] [Google Scholar]
  30. Tanaka Y., Deluca H. F. The control of 25-hydroxyvitamin D metabolism by inorganic phosphorus. Arch Biochem Biophys. 1973 Feb;154(2):566–574. doi: 10.1016/0003-9861(73)90010-6. [DOI] [PubMed] [Google Scholar]
  31. Wen S. F. Micropuncture studies of phosphate transport in the proximal tubule of the dog. The relationship to sodium reabsorption. J Clin Invest. 1974 Jan;53(1):143–153. doi: 10.1172/JCI107532. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. West T. E., O'Riordan J. L., Copp D. H., Bates R. F., Care A. D. The effect of hypocalcaemia on the secretion of calcitonin. J Endocrinol. 1973 Mar;56(3):463–470. doi: 10.1677/joe.0.0560463. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES