Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1983 Feb;71(2):377–384. doi: 10.1172/JCI110779

Effect of hemodialysis on left ventricular function. Dissociation of changes in filling volume and in contractile state.

J V Nixon, J H Mitchell, J J McPhaul Jr, W L Henrich
PMCID: PMC436877  PMID: 6822669

Abstract

Prior studies of the effect of hemodialysis on left ventricular function have not distinguished between the removal of uremic toxins and the change in cardiac filling volume. To separate these effects, left ventricular function was examined by serial echocardiography in five stable hemodialysis patients before and after three different dialysis procedures: (a) hemodialysis with volume Loss, (b) ultrafiltration (volume loss only), and (c) hemodialysis without volume loss. The patients were similarly studied under control conditions and after increased (5 degrees of head-down tilt for 90 min) and decreased (lower body negative pressure) cardiac filling volume. After hemodialysis with volume loss, end-diastolic volume (EDV) decreased from 167 to 128 ml (P less than 0.001) and end-systolic volume (ESV) decreased from 97 to 51 ml (P less than 0.001) without a change in stroke volume (SV). Ejection fraction increased from 42 to 52% (P less than 0.001) and mean velocity of circumferential fiber shortening (VCF) increased from 0.61 to 1.04 circumferences (circ)/s (P less than 0.001). After ultrafiltration, EDV decreased from 167 ml to 124 ml (P less than 0.001) and SV from 73 ml to 39 ml (P less than 0.001), without significant changes in ESV or VCF. In contrast to the maneuvers in which volume loss occurred, after hemodialysis without volume loss ESV decreased from 95 to 66 ml (P less than 0.001) and SV increased from 74 ml to 97 ml (P less than 0.001) without changes in EDV. EF increased from 44 to 59% (P less than 0.001) and VCF increased from 0.64 to 1.26 circ/s (P less than 0.001). Ventricular function curves plotted from data obtained under conditions of altered cardiac filling volume before and after the three dialysis maneuvers demonstrate that ultrafiltration produced a pure Frank-Starling effect, while hemodialysis with or without volume loss produced a shift in the ventricular function curves, which demonstrated an increase in the contractile state of the left ventricle. The changes in left ventricular function produced by regular hemodialysis are the combined effects of a decrease in EDV and an increase in the contractile state of the left ventricle.

Full text

PDF
381

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmad M., Blomqvist C. G., Mullins C. B., Willerson J. T. Left ventricular function during lower body negative pressure. Aviat Space Environ Med. 1977 Jun;48(6):512–515. [PubMed] [Google Scholar]
  2. Bornstein A., Zambrano S. S., Morrison R. S., Spodick D. H. Cardiac effects of hemodialysis: noninvasive monitoring by systolic time intervals. Am J Med Sci. 1975 Mar-Apr;269(2):189–192. doi: 10.1097/00000441-197503000-00004. [DOI] [PubMed] [Google Scholar]
  3. Capelli J. P., Kasparian H. Cardiac work demands and left ventricular function in end-stage renal disease. Ann Intern Med. 1977 Mar;86(3):261–267. doi: 10.7326/0003-4819-86-3-261. [DOI] [PubMed] [Google Scholar]
  4. Cohen M. V., Diaz P., Scheuer J. Echocardiographic assessment of left ventricular function in patients with chronic uremia. Clin Nephrol. 1979 Oct;12(4):156–162. [PubMed] [Google Scholar]
  5. Cooper R. H., O'Rourke R. A., Karliner J. S., Peterson K. L., Leopold G. R. Comparison of ultrasound and cineangiographic measurements of the mean rate of circumferential fiber shortening in man. Circulation. 1972 Nov;46(5):914–923. doi: 10.1161/01.cir.46.5.914. [DOI] [PubMed] [Google Scholar]
  6. Crawford M. H., Lindenfeld J., O'Rourke R. A. Effects of oral propranolol on left ventricular size and performance during exercise and acute pressure loading. Circulation. 1980 Mar;61(3):549–554. doi: 10.1161/01.cir.61.3.549. [DOI] [PubMed] [Google Scholar]
  7. Curry O. B., Basten J. F., Francis M. J., Smith R. Calcium uptake by sarcoplasmic reticulum of muscle from vitamin D-deficient rabbits. Nature. 1974 May 3;249(452):83–84. doi: 10.1038/249083a0. [DOI] [PubMed] [Google Scholar]
  8. Del Greco F., Simon N. M., Roguska J., Walker C. Hemodynamic studies in chronic uremia. Circulation. 1969 Jul;40(1):87–95. doi: 10.1161/01.cir.40.1.87. [DOI] [PubMed] [Google Scholar]
  9. Folland E. D., Parisi A. F., Moynihan P. F., Jones D. R., Feldman C. L., Tow D. E. Assessment of left ventricular ejection fraction and volumes by real-time, two-dimensional echocardiography. A comparison of cineangiographic and radionuclide techniques. Circulation. 1979 Oct;60(4):760–766. doi: 10.1161/01.cir.60.4.760. [DOI] [PubMed] [Google Scholar]
  10. Grossman W., Braunwald E., Mann T., McLaurin L. P., Green L. H. Contractile state of the left ventricle in man as evaluated from end-systolic pressure-volume relations. Circulation. 1977 Nov;56(5):845–852. doi: 10.1161/01.cir.56.5.845. [DOI] [PubMed] [Google Scholar]
  11. Hirshleifer J., Crawford M., O'Rourke R. A., Karliner J. S. Influence of acute alterations in heart rate and systemic arterial pressure on echocardiographic measures of left ventricular perfornmance in normal human subjects. Circulation. 1975 Nov;52(5):835–841. doi: 10.1161/01.cir.52.5.835. [DOI] [PubMed] [Google Scholar]
  12. Hung J., Harris P. J., Uren R. F., Tiller D. J., Kelly D. T. Uremic cardiomyopathy--effect of hemodialysis on left ventricular function in end-stage renal failure. N Engl J Med. 1980 Mar 6;302(10):547–551. doi: 10.1056/NEJM198003063021003. [DOI] [PubMed] [Google Scholar]
  13. Ianhez L. E., Lowen J., Sarbaga E. Uremic myocardiopathy. Nephron. 1975;15(1):17–28. doi: 10.1159/000180489. [DOI] [PubMed] [Google Scholar]
  14. Karliner J. S., Gault J. H., Eckberg D., Mullins C. B., Ross J., Jr Mean velocity of fiber shortening. A simplified measure of left ventricular myocardial contractility. Circulation. 1971 Sep;44(3):323–333. doi: 10.1161/01.cir.44.3.323. [DOI] [PubMed] [Google Scholar]
  15. Lewin K., Trautman L. Ischaemic myocardial damage in chronic renal failure. Br Med J. 1971 Oct 16;4(5780):151–152. doi: 10.1136/bmj.4.5780.151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lindner A., Charra B., Sherrard D. J., Scribner B. H. Accelerated atherosclerosis in prolonged maintenance hemodialysis. N Engl J Med. 1974 Mar 28;290(13):697–701. doi: 10.1056/NEJM197403282901301. [DOI] [PubMed] [Google Scholar]
  17. Macdonald I. L., Uldall R., Buda A. J. The effect of hemodialysis on cardiac rhythm and performance. Clin Nephrol. 1981 Jun;15(6):321–327. [PubMed] [Google Scholar]
  18. Mitchell J. H., Wildenthal K. Analysis of left ventricular function. Proc R Soc Med. 1972 Jun;65(6):542–545. [PMC free article] [PubMed] [Google Scholar]
  19. Neff M. S., Kim K. E., Persoff M., Onesti G., Swartz C. Hemodynamics of uremic anemia. Circulation. 1971 Jun;43(6):876–883. doi: 10.1161/01.cir.43.6.876. [DOI] [PubMed] [Google Scholar]
  20. Nixon J. V., Anderson R. J., Cohen M. L. Alterations in left ventricular mass and performance in patients treated effectively for thyrotoxicosis. A comparative echocardiographic study. Am J Med. 1979 Aug;67(2):268–276. doi: 10.1016/0002-9343(79)90402-9. [DOI] [PubMed] [Google Scholar]
  21. Nixon J. V., Murray R. G., Bryant C., Johnson R. L., Jr, Mitchell J. H., Holland O. B., Gomez-Sanchez C., Vergne-Marini P., Blomqvist C. G. Early cardiovascular adaptation to simulated zero gravity. J Appl Physiol Respir Environ Exerc Physiol. 1979 Mar;46(3):541–548. doi: 10.1152/jappl.1979.46.3.541. [DOI] [PubMed] [Google Scholar]
  22. Nixon J. V., Murray R. G., Leonard P. D., Mitchell J. H., Blomqvist C. G. Effect of large variations in preload on left ventricular performance characteristics in normal subjects. Circulation. 1982 Apr;65(4):698–703. doi: 10.1161/01.cir.65.4.698. [DOI] [PubMed] [Google Scholar]
  23. Nutter D. O., Hurst V. W., 3rd, Murray R. H. Ventricular performance during graded hypovolemia induced by lower body negative pressure. J Appl Physiol. 1969 Jan;26(1):23–30. doi: 10.1152/jappl.1969.26.1.23. [DOI] [PubMed] [Google Scholar]
  24. Penpargkul S., Scheuer J. Effect of uraemia upon the performance of the rat heart. Cardiovasc Res. 1972 Nov;6(6):702–708. doi: 10.1093/cvr/6.6.702. [DOI] [PubMed] [Google Scholar]
  25. Pietro D. A., Voelkel A. G., Ray B. J., Parisi A. F. Reproducibility of echocardiography. A study evaluating the variability of serial echocardiographic measurements. Chest. 1981 Jan;79(1):29–32. doi: 10.1378/chest.79.1.29. [DOI] [PubMed] [Google Scholar]
  26. Popp R. L., Wolfe S. B., Hirata T., Feigenbaum H. Estimation of right and left ventricular size by ultrasound. A study of the echoes from the interventricular septum. Am J Cardiol. 1969 Oct;24(4):523–530. doi: 10.1016/0002-9149(69)90495-0. [DOI] [PubMed] [Google Scholar]
  27. Prakash R., Wegner S. Indirect assessment of left ventricular function following hemodialysis in patients with chronic renal disease. Am J Med Sci. 1972 Aug;264(2):127–133. doi: 10.1097/00000441-197208000-00006. [DOI] [PubMed] [Google Scholar]
  28. Prosser D., Parsons V. EDITORIAL: The case for a specific uraemic myocardopathy. Nephron. 1975;15(1):4–7. doi: 10.1159/000180487. [DOI] [PubMed] [Google Scholar]
  29. Rankin L. S., Moos S., Grossman W. Alterations in preload and ejection phase indices of left ventricular performance,. Circulation. 1975 May;51(5):910–915. doi: 10.1161/01.cir.51.5.910. [DOI] [PubMed] [Google Scholar]
  30. Redwood D. R., Henry W. L., Epstein S. E. Evaluation of the ability of echocardiography to measure acute alterations in left ventricular volume. Circulation. 1974 Nov;50(5):901–904. doi: 10.1161/01.cir.50.5.901. [DOI] [PubMed] [Google Scholar]
  31. Scheuer J., Stezoski W. The effects of uremic compounds on cardiac function and metabolism. J Mol Cell Cardiol. 1973 Jun;5(3):287–300. doi: 10.1016/0022-2828(73)90068-0. [DOI] [PubMed] [Google Scholar]
  32. Schiller N. B., Acquatella H., Ports T. A., Drew D., Goerke J., Ringertz H., Silverman N. H., Brundage B., Botvinick E. H., Boswell R. Left ventricular volume from paired biplane two-dimensional echocardiography. Circulation. 1979 Sep;60(3):547–555. doi: 10.1161/01.cir.60.3.547. [DOI] [PubMed] [Google Scholar]
  33. Silverman N. H., Ports T. A., Snider A. R., Schiller N. B., Carlsson E., Heilbron D. C. Determination of left ventricular volume in children: echocardiographic and angiographic comparisons. Circulation. 1980 Sep;62(3):548–557. doi: 10.1161/01.cir.62.3.548. [DOI] [PubMed] [Google Scholar]
  34. Teichholz L. E., Kreulen T., Herman M. V., Gorlin R. Problems in echocardiographic volume determinations: echocardiographic-angiographic correlations in the presence of absence of asynergy. Am J Cardiol. 1976 Jan;37(1):7–11. doi: 10.1016/0002-9149(76)90491-4. [DOI] [PubMed] [Google Scholar]
  35. Uraoka T., Sugimoto T., Inasaka T., Kaseno K., Hirasawa K. Changes of cardiac performance in renal failure. Jpn Heart J. 1975 Sep;16(5):489–499. doi: 10.1536/ihj.16.489. [DOI] [PubMed] [Google Scholar]
  36. Wolthuis R. A., Bergman S. A., Nicogossian A. E. Physiological effects of locally applied reduced pressure in man. Physiol Rev. 1974 Jul;54(3):566–595. doi: 10.1152/physrev.1974.54.3.566. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES