Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1983 Apr;71(4):909–915. doi: 10.1172/JCI110845

Bioconversion of C-6 Sulfidopeptide Leukotrienes by the Responding Guinea Pig Ileum Determines the Time Course of its Contraction

Steven Krilis 1,2,3, Robert A Lewis 1,2,3, E J Corey 1,2,3, K Frank Austen 1,2,3
PMCID: PMC436948  PMID: 6300193

Abstract

The naturally occurring sulfidopeptide leukotrienes, leukotriene (LT) C4 (LTC4) [5(S)-hydroxy - 6(R) - S - glutathionyl - 7,9 - trans, 11,14 - cis - eicosatetraenoic acid] and its cysteinylglycine (LTD4) and cysteinyl (LTE4) analogs, which are derived by peptide cleavage, differ in the concentrations required to elicit comparable contractions of the guinea pig ileum, with respective potencies of 1.2:5:1. The effect of the ongoing bioconversion of LTC4 and LTD4 on the contractile response of the guinea pig ileum to each was determined by recording the pattern of the contraction and quantitating the initial agonist and its metabolic products. The contraction was elicited by radiolabeled agonist, and its conversion products were sampled at defined intervals and resolved by their retention times on reverse-phase high performance liquid chromatography. After a latent period of 60 s. LTC4 initiated a linear response, followed by a slower, progressive response to a maximum level that was maintained without relaxation. The metabolic conversion of LTC4 was <5% during the linear phase of contraction and complete inhibition of bioconversion of LTC4 to LTD4 by the presence of serine-borate complex did not alter the pattern of the spasmogenic response. As the maximum response in the presence of serine-borate complex was three-quarters of that obtained without the inhibitor of bioconversion, the predominant response was to LTC4 itself. The spasmogenic response of the ileum to LTD4 was immediate, linear to a maximum level, and immediately followed by a marked relaxation. That the failure of LTD4 to sustain a contraction was due to its immediate, rapid, and quantitative conversion to the less potent LTE4 was established by pharmacologically inhibiting and anatomically deleting the converting activity. In the presence of L-cysteine the conversion of LTD4 to LTE4 was largely inhibited and the maximum contractile response was well maintained. After anatomic removal of the mucosa that contained the LTD4 dipeptidase activity, the longitudinal smooth muscle preparation gave a maximal response to LTD4 that was fully maintained. Thus, bioconversion is not a prerequisite for the spasmogenic activity of LTC4 and accounts for the transient response of the ileum to LTD4.

Full text

PDF
911

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson M. E., Allison R. D., Meister A. Interconversion of leukotrienes catalyzed by purified gamma-glutamyl transpeptidase: concomitant formation of leukotriene D4 and gamma-glutamyl amino acids. Proc Natl Acad Sci U S A. 1982 Feb;79(4):1088–1091. doi: 10.1073/pnas.79.4.1088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bernström K., Hammarström S. Metabolism of leukotriene D by porcine kidney. J Biol Chem. 1981 Sep 25;256(18):9579–9582. [PubMed] [Google Scholar]
  3. Burke J. A., Levi R., Guo Z. G., Corey E. J. Leukotrienes C4, D4 and E4: effects on human and guinea-pig cardiac preparations in vitro. J Pharmacol Exp Ther. 1982 Apr;221(1):235–241. [PubMed] [Google Scholar]
  4. Dahlén S. E., Hedqvist P., Hammarström S., Samuelsson B. Leukotrienes are potent constrictors of human bronchi. Nature. 1980 Dec 4;288(5790):484–486. doi: 10.1038/288484a0. [DOI] [PubMed] [Google Scholar]
  5. Hanna C. J., Bach M. K., Pare P. D., Schellenberg R. R. Slow-reacting substances (leukotrienes) contract human airway and pulmonary vascular smooth muscle in vitro. Nature. 1981 Mar 26;290(5804):343–344. doi: 10.1038/290343a0. [DOI] [PubMed] [Google Scholar]
  6. Kosterlitz H. W., Lydon R. J., Watt A. J. The effects of adrenaline, noradrenaline and isoprenaline on inhibitory alpha- and beta-adrenoceptors in the longitudinal muscle of the guinea-pig ileum. Br J Pharmacol. 1970 Jun;39(2):398–413. doi: 10.1111/j.1476-5381.1970.tb12903.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lee C. W., Lewis R. A., Corey E. J., Austen K. F. Conversion of leukotriene D4 to leukotriene E4 by a dipeptidase released from the specific granule of human polymorphonuclear leucocytes. Immunology. 1983 Jan;48(1):27–35. [PMC free article] [PubMed] [Google Scholar]
  8. Lee C. W., Lewis R. A., Corey E. J., Barton A., Oh H., Tauber A. I., Austen K. F. Oxidative inactivation of leukotriene C4 by stimulated human polymorphonuclear leukocytes. Proc Natl Acad Sci U S A. 1982 Jul;79(13):4166–4170. doi: 10.1073/pnas.79.13.4166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Levine L., Morgan R. A., Lewis R. A., Austen K. F., Clark D. A., Marfat A., Corey E. J. Radioimmunoassay of the leukotrienes of slow reacting substance of anaphylaxis. Proc Natl Acad Sci U S A. 1981 Dec;78(12):7692–7696. doi: 10.1073/pnas.78.12.7692. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lewis R. A., Austen K. F., Drazen J. M., Clark D. A., Marfat A., Corey E. J. Slow reacting substances of anaphylaxis: identification of leukotrienes C-1 and D from human and rat sources. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3710–3714. doi: 10.1073/pnas.77.6.3710. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lewis R. A., Drazen J. M., Austen K. F., Clark D. A., Corey E. J. Identification of the C(6)-S-conjugate of leukotriene A with cysteine as a naturally occurring slow reacting substance of anaphylaxis (SRS-A). Importance of the 11-cis-geometry for biological activity. Biochem Biophys Res Commun. 1980 Sep 16;96(1):271–277. doi: 10.1016/0006-291x(80)91210-3. [DOI] [PubMed] [Google Scholar]
  12. Morris H. R., Taylor G. W., Piper P. J., Tippins J. R. Structure of slow-reacting substance of anaphylaxis from guinea-pig lung. Nature. 1980 May 8;285(5760):104–106. doi: 10.1038/285104a0. [DOI] [PubMed] [Google Scholar]
  13. Murphy R. C., Hammarström S., Samuelsson B. Leukotriene C: a slow-reacting substance from murine mastocytoma cells. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4275–4279. doi: 10.1073/pnas.76.9.4275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Orning L., Bernström K., Hammarström S. Formation of leukotrienes E3, E4 and E5 in rat basophilic leukemia cells. Eur J Biochem. 1981 Nov;120(1):41–45. doi: 10.1111/j.1432-1033.1981.tb05667.x. [DOI] [PubMed] [Google Scholar]
  15. Orning L., Hammarström S. Inhibition of leukotriene C and leukotriene D biosynthesis. J Biol Chem. 1980 Sep 10;255(17):8023–8026. [PubMed] [Google Scholar]
  16. Orning L., Hammarström S., Samuelsson B. Leukotriene D: a slow reacting substance from rat basophilic leukemia cells. Proc Natl Acad Sci U S A. 1980 Apr;77(4):2014–2017. doi: 10.1073/pnas.77.4.2014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Parker C. W., Falkenhein S. F., Huber M. M. Sequential conversion of the glutathionyl side chain of slow reacting substance (SRS) to cysteinyl-glycine and cysteine in rat basophilic leukemia cells stimulated with A-23187. Prostaglandins. 1980 Nov;20(5):863–886. doi: 10.1016/0090-6980(80)90139-2. [DOI] [PubMed] [Google Scholar]
  18. Parker C. W., Koch D., Huber M. M., Falkenhein S. F. Formation of the cysteinyl form of slow reacting substance (leukotriene E4) in human plasma. Biochem Biophys Res Commun. 1980 Dec 16;97(3):1038–1046. doi: 10.1016/0006-291x(80)91480-1. [DOI] [PubMed] [Google Scholar]
  19. Rådmark O., Malmsten C., Samuelsson B., Goto G., Marfat A., Corey E. J. Leukotriene A. Isolation from human polymorphonuclear leukocytes. J Biol Chem. 1980 Dec 25;255(24):11828–11831. [PubMed] [Google Scholar]
  20. Rådmark O., Malmsten C., Samuelsson B. Leukotriene A4: enzymatic conversion to leukotriene C4. Biochem Biophys Res Commun. 1980 Oct 31;96(4):1679–1687. doi: 10.1016/0006-291x(80)91367-4. [DOI] [PubMed] [Google Scholar]
  21. Sok D. E., Pai J. K., Atrache V., Kang Y. C., Sih C. J. Enzymatic inactivation of SRS-Cys-Gly (leukotriene D). Biochem Biophys Res Commun. 1981 Jul 16;101(1):222–229. doi: 10.1016/s0006-291x(81)80034-4. [DOI] [PubMed] [Google Scholar]
  22. Sok D. E., Pai J. K., Atrache V., Sih C. J. Characterization of slow reacting substances (SRSs) of rat basophilic leukemia (RBL-1) cells: effect of cysteine on SRS profile. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6481–6485. doi: 10.1073/pnas.77.11.6481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Tate S. S., Meister A. Serine-borate complex as a transition-state inhibitor of gamma-glutamyl transpeptidase. Proc Natl Acad Sci U S A. 1978 Oct;75(10):4806–4809. doi: 10.1073/pnas.75.10.4806. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES