Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1994 May 10;91(10):4323–4327. doi: 10.1073/pnas.91.10.4323

Molecular cloning, characterization, and elicitation of acetyl-CoA carboxylase from alfalfa.

B S Shorrosh 1, R A Dixon 1, J B Ohlrogge 1
PMCID: PMC43777  PMID: 7910406

Abstract

Acetyl-CoA carboxylase [ACCase; acetyl-CoA:carbon-dioxide ligase (ADP-forming), EC 6.4.1.2] catalyzes the ATP-dependent carboxylation of acetyl CoA to produce malonyl CoA. In plants, malonyl CoA is needed for plastid localized fatty acid biosynthesis and for a variety of pathways in the cytoplasm including flavonoid biosynthesis. We have determined the full nucleotide sequence of an ACCase from alfalfa, which appears to represent a cytoplasmic isozyme. Partial cDNAs were isolated from a cDNA library of suspension culture cells that had been elicited for isoflavonoid phytoalexin synthesis. The full-length sequence was obtained by primer extension and amplification of the cDNA with synthetic primers. The sequence codes for a protein of 2257 amino acids with a calculated M(r) of 252,039. The biotin carboxylase, biotin carboxyl carrier protein, and carboxyltransferase domains, respectively, show approximately 72%, 50%, and 65% sequence similarity to those of animal, diatom, and yeast ACCase sequences. ACCase enzyme activity and transcripts are induced severalfold upon addition of yeast or fungal elicitors to alfalfa cell cultures.

Full text

PDF
4326

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Al-Feel W., Chirala S. S., Wakil S. J. Cloning of the yeast FAS3 gene and primary structure of yeast acetyl-CoA carboxylase. Proc Natl Acad Sci U S A. 1992 May 15;89(10):4534–4538. doi: 10.1073/pnas.89.10.4534. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alix J. H. A rapid procedure for cloning genes from lambda libraries by complementation of E. coli defective mutants: application to the fabE region of the E. coli chromosome. DNA. 1989 Dec;8(10):779–789. doi: 10.1089/dna.1989.8.779. [DOI] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  4. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  5. Dalkin K., Edwards R., Edington B., Dixon R. A. Stress Responses in Alfalfa (Medicago sativa L.): I. Induction of Phenylpropanoid Biosynthesis and Hydrolytic Enzymes in Elicitor-Treated Cell Suspension Cultures. Plant Physiol. 1990 Feb;92(2):440–446. doi: 10.1104/pp.92.2.440. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dixon R. A., Harrison M. J. Activation, structure, and organization of genes involved in microbial defense in plants. Adv Genet. 1990;28:165–234. doi: 10.1016/s0065-2660(08)60527-1. [DOI] [PubMed] [Google Scholar]
  7. Ebel J., Hahlbrock K. Enzymes of flavone and flavonol-glycoside biosynthesis. Coordinated and selective induction in cell-suspension cultures of Petroselinum hortense. Eur J Biochem. 1977 May 2;75(1):201–209. doi: 10.1111/j.1432-1033.1977.tb11518.x. [DOI] [PubMed] [Google Scholar]
  8. Ebel J., Schmidt W. E., Loyal R. Phytoalexin synthesis in soybean cells: elicitor induction of phenylalanine ammonia-lyase and chalcone synthase mRNAs and correlation with phytoalexin accumulation. Arch Biochem Biophys. 1984 Jul;232(1):240–248. doi: 10.1016/0003-9861(84)90540-x. [DOI] [PubMed] [Google Scholar]
  9. Egli M. A., Gengenbach B. G., Gronwald J. W., Somers D. A., Wyse D. L. Characterization of Maize Acetyl-Coenzyme A Carboxylase. Plant Physiol. 1993 Feb;101(2):499–506. doi: 10.1104/pp.101.2.499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gornicki P., Scappino L. A., Haselkorn R. Genes for two subunits of acetyl coenzyme A carboxylase of Anabaena sp. strain PCC 7120: biotin carboxylase and biotin carboxyl carrier protein. J Bacteriol. 1993 Aug;175(16):5268–5272. doi: 10.1128/jb.175.16.5268-5272.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kannangara C. G., Stumpf P. K. Fat metabolism in higher plants. LIV. A procaryotic type acetyl CoA carboxylase in spinach chloroplasts. Arch Biochem Biophys. 1972 Sep;152(1):83–91. doi: 10.1016/0003-9861(72)90196-8. [DOI] [PubMed] [Google Scholar]
  12. Kim K. H., López-Casillas F., Bai D. H., Luo X., Pape M. E. Role of reversible phosphorylation of acetyl-CoA carboxylase in long-chain fatty acid synthesis. FASEB J. 1989 Sep;3(11):2250–2256. doi: 10.1096/fasebj.3.11.2570725. [DOI] [PubMed] [Google Scholar]
  13. Kondo H., Shiratsuchi K., Yoshimoto T., Masuda T., Kitazono A., Tsuru D., Anai M., Sekiguchi M., Tanabe T. Acetyl-CoA carboxylase from Escherichia coli: gene organization and nucleotide sequence of the biotin carboxylase subunit. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9730–9733. doi: 10.1073/pnas.88.21.9730. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kondo H., Shiratsuchi K., Yoshimoto T., Masuda T., Kitazono A., Tsuru D., Anai M., Sekiguchi M., Tanabe T. Acetyl-CoA carboxylase from Escherichia coli: gene organization and nucleotide sequence of the biotin carboxylase subunit. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9730–9733. doi: 10.1073/pnas.88.21.9730. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kozak M. An analysis of 5'-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res. 1987 Oct 26;15(20):8125–8148. doi: 10.1093/nar/15.20.8125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lanz T., Tropf S., Marner F. J., Schröder J., Schröder G. The role of cysteines in polyketide synthases. Site-directed mutagenesis of resveratrol and chalcone synthases, two key enzymes in different plant-specific pathways. J Biol Chem. 1991 May 25;266(15):9971–9976. [PubMed] [Google Scholar]
  17. Li S. J., Cronan J. E., Jr The gene encoding the biotin carboxylase subunit of Escherichia coli acetyl-CoA carboxylase. J Biol Chem. 1992 Jan 15;267(2):855–863. [PubMed] [Google Scholar]
  18. Li S. J., Cronan J. E., Jr The genes encoding the two carboxyltransferase subunits of Escherichia coli acetyl-CoA carboxylase. J Biol Chem. 1992 Aug 25;267(24):16841–16847. [PubMed] [Google Scholar]
  19. López-Casillas F., Bai D. H., Luo X. C., Kong I. S., Hermodson M. A., Kim K. H. Structure of the coding sequence and primary amino acid sequence of acetyl-coenzyme A carboxylase. Proc Natl Acad Sci U S A. 1988 Aug;85(16):5784–5788. doi: 10.1073/pnas.85.16.5784. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Millar S. J., Dempsey D., Dickinson D. P. High-yield recovery of recombinant DNA from poorly growing cosmid and lambda genomic clones. Biotechniques. 1992 Oct;13(4):554-6, 558-60, 562. [PubMed] [Google Scholar]
  21. Möller W., Amons R. Phosphate-binding sequences in nucleotide-binding proteins. FEBS Lett. 1985 Jul 1;186(1):1–7. doi: 10.1016/0014-5793(85)81326-0. [DOI] [PubMed] [Google Scholar]
  22. Nikolau B. J., Hawke J. C. Purification and characterization of maize leaf acetyl-coenzyme A carboxylase. Arch Biochem Biophys. 1984 Jan;228(1):86–96. doi: 10.1016/0003-9861(84)90049-3. [DOI] [PubMed] [Google Scholar]
  23. Pollard M. R., Stumpf P. K. Biosynthesis of C(20) and C(22) Fatty Acids by Developing Seeds of Limnanthes alba: CHAIN ELONGATION AND Delta5 DESATURATION. Plant Physiol. 1980 Oct;66(4):649–655. doi: 10.1104/pp.66.4.649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Post-Beittenmiller D., Jaworski J. G., Ohlrogge J. B. In vivo pools of free and acylated acyl carrier proteins in spinach. Evidence for sites of regulation of fatty acid biosynthesis. J Biol Chem. 1991 Jan 25;266(3):1858–1865. [PubMed] [Google Scholar]
  25. Post-Beittenmiller D., Roughan G., Ohlrogge J. B. Regulation of plant Fatty Acid biosynthesis : analysis of acyl-coenzyme a and acyl-acyl carrier protein substrate pools in spinach and pea chloroplasts. Plant Physiol. 1992 Oct;100(2):923–930. doi: 10.1104/pp.100.2.923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Roessler P. G., Ohlrogge J. B. Cloning and characterization of the gene that encodes acetyl-coenzyme A carboxylase in the alga Cyclotella cryptica. J Biol Chem. 1993 Sep 15;268(26):19254–19259. [PubMed] [Google Scholar]
  27. Samols D., Thornton C. G., Murtif V. L., Kumar G. K., Haase F. C., Wood H. G. Evolutionary conservation among biotin enzymes. J Biol Chem. 1988 May 15;263(14):6461–6464. [PubMed] [Google Scholar]
  28. Sanchez-Pescador R., Urdea M. S. Use of unpurified synthetic deoxynucleotide primers for rapid dideoxynucleotide chain termination sequencing. DNA. 1984 Aug;3(4):339–343. doi: 10.1089/dna.1.1984.3.339. [DOI] [PubMed] [Google Scholar]
  29. Sasaki Y., Hakamada K., Suama Y., Nagano Y., Furusawa I., Matsuno R. Chloroplast-encoded protein as a subunit of acetyl-CoA carboxylase in pea plant. J Biol Chem. 1993 Nov 25;268(33):25118–25123. [PubMed] [Google Scholar]
  30. Shorrosh B. S., Dixon R. A. Molecular characterization and expression of an alfalfa protein with sequence similarity to mammalian ERp72, a glucose-regulated endoplasmic reticulum protein containing active site sequences of protein disulphide isomerase. Plant J. 1992 Jan;2(1):51–58. doi: 10.1046/j.1365-313x.1992.t01-50-00999.x. [DOI] [PubMed] [Google Scholar]
  31. Shorrosh B. S., Dixon R. A. Molecular cloning of a putative plant endomembrane protein resembling vertebrate protein disulfide-isomerase and a phosphatidylinositol-specific phospholipase C. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10941–10945. doi: 10.1073/pnas.88.23.10941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Shorrosh B. S., Dixon R. A. Sequence analysis of an alfalfa 25S rRNA. Plant Mol Biol. 1992 Apr;18(6):1189–1190. doi: 10.1007/BF00047724. [DOI] [PubMed] [Google Scholar]
  33. Sternberg M. J., Taylor W. R. Modelling the ATP-binding site of oncogene products, the epidermal growth factor receptor and related proteins. FEBS Lett. 1984 Oct 1;175(2):387–392. doi: 10.1016/0014-5793(84)80774-7. [DOI] [PubMed] [Google Scholar]
  34. Takai T., Yokoyama C., Wada K., Tanabe T. Primary structure of chicken liver acetyl-CoA carboxylase deduced from cDNA sequence. J Biol Chem. 1988 Feb 25;263(6):2651–2657. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES