Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jan 17;71(Pt 2):o121. doi: 10.1107/S2056989014028266

Crystal structure of ethyl 6-bromo-2-[(E)-2-phenyl­ethen­yl]quinoline-4-carboxyl­ate

T O Shrungesh Kumar a, S Naveen b, M N Kumara c, K M Mahadevan d, N K Lokanath e,*
PMCID: PMC4384604  PMID: 25878862

Abstract

In the title compound, C20H16BrNO2, the dihedral angle between the quinolone ring system mean plane (r.m.s. deviation = 0.018 Å) and the phenyl ring bridged by the ethynyl group, is 25.44 (14)°. There is an intra­molecular C—H⋯O hydrogen bond forming an S(6) ring motif. In the crystal, mol­ecules are linked via C—H⋯O hydrogen bonds forming chains propagating along the b-axis direction.

Keywords: crystal structure, quinoline, quinoline-4-carboxyl­ate, hydrogen bonding

Related literature  

For pharmaceutical and pharmacological activities of quinolines, see: Beagley et al. (2003). The title compound was synthesized in a continuation of our work on new quinoline-based therapeutic agents, see: Pradeep et al. (2014).graphic file with name e-71-0o121-scheme1.jpg

Experimental  

Crystal data  

  • C20H16BrNO2

  • M r = 382.24

  • Orthorhombic, Inline graphic

  • a = 14.0819 (7) Å

  • b = 9.7470 (5) Å

  • c = 24.0399 (12) Å

  • V = 3299.6 (3) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 3.49 mm−1

  • T = 293 K

  • 0.30 × 0.27 × 0.25 mm

Data collection  

  • Bruker X8 Proteum diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2013) T min = 0.421, T max = 0.476

  • 12970 measured reflections

  • 2722 independent reflections

  • 2213 reflections with I > 2σ(I)

  • R int = 0.071

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.134

  • S = 1.04

  • 2722 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.78 e Å−3

  • Δρmin = −0.92 e Å−3

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989014028266/su5042sup1.cif

e-71-0o121-sup1.cif (25.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989014028266/su5042Isup2.hkl

e-71-0o121-Isup2.hkl (133.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989014028266/su5042Isup3.cml

. DOI: 10.1107/S2056989014028266/su5042fig1.tif

A view of mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The intra­molecular hydrogen bond is shown as dashed line (see Table 1 for details).

a . DOI: 10.1107/S2056989014028266/su5042fig2.tif

A partial view along the a axis of the crystal packing of the title compound. The intra- and inter-mol­ecular hydrogen bonds are shown as dashed lines (see Table 1 for details; H atoms: grey balls; H atoms not involved in hydrogen bonding have been omitted for clarity).

CCDC reference: 1041593

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
C6H6O13 0.93 2.22 2.848(4) 124
C15H15AO13i 0.97 2.51 3.413(4) 154

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors are grateful to the Institution of Excellence, Vijnana Bhavana, University of Mysore, Mysuru, for providing the single-crystal X-ray diffractometer facility.

supplementary crystallographic information

S1. Comment

Quinolines have been considered as the most prevalent N-hetero aromatic compounds that exhibit a wide spectrum of pharmaceutical and pharmacological activities (Beagley et al., 2003). Some of the quinoline-4-carboxylates were reported to possess potent 5HT3 antagonizing activity and anti-emetic activity. In view of their broad spectrum of medicinal properties and in continuation of our work on new quinoline based therapeutic agents (Pradeep et al., 2014), the title compound was synthesized, and we report herein on its crystal structure.

The molecular structure of the title molecule is shown in Fig. 1. The quinoline ring system (N1/C2-C10) is planar with the maximum deviations from the mean plane being for atoms C8 and C5 viz. 0.018 (2) Å. The dihedral angle between the quinoline ring and the phenyl ring (C19–C24) bridged by the ethynyl group is 25.44 (14)°. The two rings of the quinolyl moiety are fused in an axial fashion and form a dihedral angle of 1.15 (13)°.

In the crystal, molecules are linked via C–H···O hydrogen bonds forming chains propagating along the b axis direction (Table 1 and Fig. 2).

S2. Experimental

A mixture of 2-aryl-6-chloro/bromo quinoline-4-carboxylic acid (1.0 g) and absolute EtOH (15 ml) was stirred at 273 - 278 K. The concentrated sulfuric acid (2 - 3 ml) was added drop wise into the flask until the powdered 2-aryl-6-chloroquinoline-4-carboxylic acid was completely dissolved. The solution was then refluxed for 15–17 h. The completion of the reaction was monitored by thin layer chromatography [hexane and ethyl acetate (9:1 v/v)]. The reaction mixture was poured into a crushed ice (100 ml), the precipitate was collected by filtration, washed with water and EtOH, dried under vacuum to afford crude product. The crude product was purified by column chromatography using silica gel (60–120 mesh, petroleum ether: ethyl acetate, 9:1 v/v). Green block-shaped crystals were obtained by slow evaporation of the solvent.

1H-NMR(400 MHz, CDCl3): δ = 8.95 (d, J = 2.00 Hz, 1H), 8.17 (s, 1H), 7.99 (d, J = 4.40 Hz, 1H), 7.82 (d, J = 2.40 Hz, 1H), 7.81 (t, J = 2.00 Hz, 1H), 7.75 (s, 1H), 7.65 (d, J = 7.20 Hz, 1H), 7.35–7.35 (m, 4H), 4.54 (q, J = 7.20 Hz, 2H), 1.46–1.49 (m, 3H) p.p.m.. MS (70 eV) m/z (%): 382.0 (M+).

S3. Refinement

All the H atoms were fixed geometrically (C—H = 0.93–0.96 Å and allowed to ride on their parent atoms with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(C) for other H atoms.

Figures

Fig. 1.

Fig. 1.

A view of molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The intramolecular hydrogen bond is shown as dashed line (see Table 1 for details).

Fig. 2.

Fig. 2.

A partial view along the a axis of the crystal packing of the title compound. The intra- and inter-molecular hydrogen bonds are shown as dashed lines (see Table 1 for details; H atoms: grey balls; H atoms not involved in hydrogen bonding have been omitted for clarity).

Crystal data

C20H16BrNO2 F(000) = 1552
Mr = 382.24 Dx = 1.539 Mg m3
Orthorhombic, Pbca Cu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ac 2ab Cell parameters from 2722 reflections
a = 14.0819 (7) Å θ = 5.8–64.5°
b = 9.7470 (5) Å µ = 3.49 mm1
c = 24.0399 (12) Å T = 293 K
V = 3299.6 (3) Å3 Block, green
Z = 8 0.30 × 0.27 × 0.25 mm

Data collection

Bruker X8 Proteum diffractometer 2722 independent reflections
Radiation source: Bruker MicroStar microfocus rotating anode 2213 reflections with I > 2σ(I)
Helios multilayer optics monochromator Rint = 0.071
Detector resolution: 18.4 pixels mm-1 θmax = 64.5°, θmin = 5.8°
φ and ω scans h = −16→15
Absorption correction: multi-scan (SADABS; Bruker, 2013) k = −11→11
Tmin = 0.421, Tmax = 0.476 l = −28→27
12970 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0857P)2] where P = (Fo2 + 2Fc2)/3
2722 reflections (Δ/σ)max = 0.001
218 parameters Δρmax = 0.78 e Å3
0 restraints Δρmin = −0.92 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br11 0.40232 (3) 0.12926 (3) 0.45926 (2) 0.0260 (2)
O13 0.3502 (2) 0.6096 (2) 0.39081 (10) 0.0299 (8)
O14 0.32650 (17) 0.8275 (2) 0.41637 (9) 0.0225 (7)
N1 0.3740 (2) 0.6330 (3) 0.60400 (12) 0.0194 (9)
C2 0.3819 (2) 0.5243 (3) 0.56849 (15) 0.0186 (9)
C3 0.4009 (2) 0.3948 (4) 0.59271 (17) 0.0235 (11)
C4 0.4086 (2) 0.2801 (4) 0.56073 (17) 0.0252 (11)
C5 0.3971 (2) 0.2916 (3) 0.50306 (16) 0.0212 (10)
C6 0.3799 (2) 0.4140 (3) 0.47707 (15) 0.0186 (10)
C7 0.3720 (2) 0.5345 (3) 0.50974 (14) 0.0169 (9)
C8 0.3536 (2) 0.6688 (3) 0.48784 (14) 0.0170 (9)
C9 0.3445 (2) 0.7753 (3) 0.52462 (14) 0.0194 (10)
C10 0.3557 (2) 0.7552 (3) 0.58248 (14) 0.0183 (9)
C12 0.3436 (2) 0.6941 (3) 0.42679 (14) 0.0191 (10)
C15 0.3129 (3) 0.8638 (3) 0.35775 (15) 0.0256 (11)
C16 0.4064 (3) 0.8926 (4) 0.33011 (17) 0.0305 (11)
C17 0.3493 (2) 0.8754 (3) 0.61965 (15) 0.0208 (10)
C18 0.3704 (3) 0.8739 (3) 0.67333 (15) 0.0208 (11)
C19 0.3718 (2) 0.9924 (3) 0.71107 (14) 0.0189 (9)
C20 0.3281 (3) 1.1179 (3) 0.69823 (15) 0.0237 (11)
C21 0.3389 (3) 1.2296 (3) 0.73304 (16) 0.0251 (10)
C22 0.3913 (2) 1.2187 (4) 0.78153 (15) 0.0237 (11)
C23 0.4324 (3) 1.0941 (4) 0.79619 (15) 0.0246 (10)
C24 0.4218 (3) 0.9823 (3) 0.76129 (14) 0.0216 (10)
H3 0.40820 0.38790 0.63110 0.0280*
H4 0.42130 0.19540 0.57690 0.0300*
H6 0.37340 0.41800 0.43860 0.0220*
H9 0.33080 0.86260 0.51130 0.0230*
H15A 0.27260 0.94430 0.35520 0.0310*
H15B 0.28130 0.78890 0.33870 0.0310*
H16A 0.43890 0.96390 0.35000 0.0460*
H16B 0.39560 0.92140 0.29240 0.0460*
H16C 0.44440 0.81090 0.33020 0.0460*
H17 0.32900 0.95800 0.60430 0.0250*
H18 0.38580 0.78920 0.68870 0.0250*
H20 0.29170 1.12590 0.66610 0.0280*
H21 0.31060 1.31280 0.72380 0.0300*
H22 0.39920 1.29490 0.80430 0.0290*
H23 0.46650 1.08590 0.82910 0.0300*
H24 0.44850 0.89860 0.77140 0.0260*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br11 0.0262 (3) 0.0137 (3) 0.0382 (3) 0.0007 (1) −0.0011 (2) −0.0051 (1)
O13 0.0497 (17) 0.0187 (12) 0.0212 (14) −0.0009 (11) 0.0006 (12) −0.0020 (10)
O14 0.0314 (13) 0.0173 (11) 0.0189 (12) 0.0030 (10) 0.0002 (10) 0.0021 (10)
N1 0.0182 (14) 0.0181 (15) 0.0218 (16) −0.0046 (10) 0.0005 (12) −0.0002 (11)
C2 0.0163 (15) 0.0166 (16) 0.0229 (18) −0.0042 (13) 0.0002 (14) 0.0001 (14)
C3 0.026 (2) 0.0204 (18) 0.024 (2) −0.0024 (13) −0.0019 (14) 0.0032 (15)
C4 0.0229 (19) 0.0166 (18) 0.036 (2) −0.0019 (13) −0.0029 (15) 0.0059 (16)
C5 0.0158 (17) 0.0159 (17) 0.032 (2) −0.0005 (12) 0.0000 (13) −0.0022 (15)
C6 0.0162 (16) 0.0160 (16) 0.0236 (18) −0.0038 (13) 0.0008 (14) −0.0003 (14)
C7 0.0136 (15) 0.0133 (16) 0.0239 (18) −0.0019 (13) 0.0010 (13) −0.0003 (13)
C8 0.0140 (15) 0.0157 (15) 0.0213 (18) −0.0035 (13) −0.0005 (13) −0.0023 (13)
C9 0.0208 (17) 0.0154 (16) 0.0220 (18) −0.0019 (13) −0.0015 (14) −0.0006 (13)
C10 0.0157 (16) 0.0182 (16) 0.0211 (17) −0.0029 (13) −0.0004 (13) 0.0018 (13)
C12 0.0202 (17) 0.0158 (15) 0.0212 (18) −0.0003 (13) 0.0009 (13) −0.0006 (14)
C15 0.032 (2) 0.0246 (18) 0.0201 (19) 0.0066 (14) −0.0022 (15) 0.0029 (14)
C16 0.043 (2) 0.0216 (18) 0.027 (2) −0.0002 (15) 0.0061 (16) 0.0010 (16)
C17 0.0218 (17) 0.0154 (16) 0.0253 (19) −0.0014 (13) 0.0009 (14) −0.0010 (13)
C18 0.0209 (18) 0.0174 (17) 0.024 (2) −0.0010 (13) 0.0021 (14) 0.0001 (13)
C19 0.0180 (15) 0.0179 (15) 0.0207 (17) −0.0031 (13) 0.0030 (14) −0.0007 (14)
C20 0.0236 (19) 0.0276 (18) 0.0200 (19) 0.0020 (14) −0.0020 (14) −0.0011 (14)
C21 0.0296 (19) 0.0190 (16) 0.0267 (19) 0.0063 (14) 0.0016 (15) 0.0004 (15)
C22 0.0267 (19) 0.0232 (17) 0.0213 (19) −0.0062 (14) 0.0043 (14) −0.0063 (14)
C23 0.0257 (18) 0.0279 (17) 0.0203 (18) −0.0015 (15) −0.0031 (15) 0.0007 (15)
C24 0.0264 (18) 0.0189 (16) 0.0194 (17) 0.0016 (14) 0.0007 (14) 0.0039 (14)

Geometric parameters (Å, º)

Br11—C5 1.902 (3) C19—C24 1.401 (5)
O13—C12 1.198 (4) C20—C21 1.382 (5)
O14—C12 1.346 (4) C21—C22 1.384 (5)
O14—C15 1.466 (4) C22—C23 1.391 (5)
N1—C2 1.365 (4) C23—C24 1.383 (5)
N1—C10 1.324 (4) C3—H3 0.9300
C2—C3 1.416 (5) C4—H4 0.9300
C2—C7 1.423 (5) C6—H6 0.9300
C3—C4 1.361 (6) C9—H9 0.9300
C4—C5 1.400 (6) C15—H15A 0.9700
C5—C6 1.368 (4) C15—H15B 0.9700
C6—C7 1.417 (4) C16—H16A 0.9600
C7—C8 1.435 (4) C16—H16B 0.9600
C8—C9 1.370 (4) C16—H16C 0.9600
C8—C12 1.495 (5) C17—H17 0.9300
C9—C10 1.414 (5) C18—H18 0.9300
C10—C17 1.476 (4) C20—H20 0.9300
C15—C16 1.501 (6) C21—H21 0.9300
C17—C18 1.324 (5) C22—H22 0.9300
C18—C19 1.469 (4) C23—H23 0.9300
C19—C20 1.404 (4) C24—H24 0.9300
C12—O14—C15 115.8 (2) C19—C24—C23 121.4 (3)
C2—N1—C10 118.0 (3) C2—C3—H3 120.00
N1—C2—C3 116.8 (3) C4—C3—H3 119.00
N1—C2—C7 124.0 (3) C3—C4—H4 121.00
C3—C2—C7 119.3 (3) C5—C4—H4 120.00
C2—C3—C4 121.0 (4) C5—C6—H6 121.00
C3—C4—C5 119.0 (3) C7—C6—H6 121.00
Br11—C5—C4 118.5 (2) C8—C9—H9 119.00
Br11—C5—C6 118.6 (3) C10—C9—H9 119.00
C4—C5—C6 122.8 (3) O14—C15—H15A 109.00
C5—C6—C7 118.9 (3) O14—C15—H15B 109.00
C2—C7—C6 119.0 (3) C16—C15—H15A 109.00
C2—C7—C8 116.5 (3) C16—C15—H15B 110.00
C6—C7—C8 124.5 (3) H15A—C15—H15B 108.00
C7—C8—C9 118.1 (3) C15—C16—H16A 109.00
C7—C8—C12 121.9 (3) C15—C16—H16B 109.00
C9—C8—C12 120.0 (3) C15—C16—H16C 109.00
C8—C9—C10 121.3 (3) H16A—C16—H16B 110.00
N1—C10—C9 122.1 (3) H16A—C16—H16C 110.00
N1—C10—C17 119.3 (3) H16B—C16—H16C 109.00
C9—C10—C17 118.6 (3) C10—C17—H17 118.00
O13—C12—O14 122.9 (3) C18—C17—H17 118.00
O13—C12—C8 126.0 (3) C17—C18—H18 117.00
O14—C12—C8 111.0 (3) C19—C18—H18 117.00
O14—C15—C16 110.9 (3) C19—C20—H20 120.00
C10—C17—C18 124.6 (3) C21—C20—H20 120.00
C17—C18—C19 126.6 (3) C20—C21—H21 120.00
C18—C19—C20 122.9 (3) C22—C21—H21 120.00
C18—C19—C24 118.9 (3) C21—C22—H22 120.00
C20—C19—C24 118.1 (3) C23—C22—H22 120.00
C19—C20—C21 120.4 (3) C22—C23—H23 120.00
C20—C21—C22 120.6 (3) C24—C23—H23 120.00
C21—C22—C23 120.2 (3) C19—C24—H24 119.00
C22—C23—C24 119.3 (3) C23—C24—H24 119.00
C15—O14—C12—O13 2.1 (4) C2—C7—C8—C12 178.8 (3)
C15—O14—C12—C8 −178.5 (3) C7—C8—C9—C10 1.9 (4)
C12—O14—C15—C16 −86.7 (3) C12—C8—C9—C10 −178.6 (3)
C2—N1—C10—C17 −178.4 (3) C7—C8—C12—O13 −0.6 (5)
C2—N1—C10—C9 −0.1 (4) C9—C8—C12—O14 0.4 (4)
C10—N1—C2—C3 −179.6 (3) C7—C8—C12—O14 179.9 (3)
C10—N1—C2—C7 0.2 (4) C9—C8—C12—O13 179.9 (3)
C7—C2—C3—C4 −0.8 (4) C8—C9—C10—N1 −1.0 (4)
C3—C2—C7—C6 1.0 (4) C8—C9—C10—C17 177.3 (3)
N1—C2—C7—C6 −178.8 (3) N1—C10—C17—C18 7.5 (5)
N1—C2—C7—C8 0.7 (4) C9—C10—C17—C18 −170.9 (3)
N1—C2—C3—C4 179.0 (3) C10—C17—C18—C19 175.3 (3)
C3—C2—C7—C8 −179.5 (3) C17—C18—C19—C20 16.4 (6)
C2—C3—C4—C5 −0.2 (4) C17—C18—C19—C24 −161.1 (4)
C3—C4—C5—C6 1.1 (4) C18—C19—C20—C21 −174.2 (4)
C3—C4—C5—Br11 −177.2 (2) C24—C19—C20—C21 3.4 (5)
Br11—C5—C6—C7 177.4 (2) C18—C19—C24—C23 174.4 (4)
C4—C5—C6—C7 −0.9 (4) C20—C19—C24—C23 −3.3 (5)
C5—C6—C7—C2 −0.2 (4) C19—C20—C21—C22 −1.3 (6)
C5—C6—C7—C8 −179.6 (3) C20—C21—C22—C23 −1.1 (6)
C6—C7—C8—C9 177.8 (3) C21—C22—C23—C24 1.2 (6)
C6—C7—C8—C12 −1.8 (4) C22—C23—C24—C19 1.0 (6)
C2—C7—C8—C9 −1.7 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C6—H6···O13 0.93 2.22 2.848 (4) 124
C15—H15A···O13i 0.97 2.51 3.413 (4) 154

Symmetry code: (i) −x+1/2, y+1/2, z.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: SU5042).

References

  1. Beagley, P., Blackie, M. A., Chibale, K., Clarkson, C., Moss, J. R., Smith, P. & Su, H. (2003). J. Chem. Soc. Dalton Trans. pp. 3046–3051.
  2. Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  4. Pradeep, P. S., Naveen, S., Kumara, M. N., Mahadevan, K. M. & Lokanath, N. K. (2014). Acta Cryst. E70, o981–o982. [DOI] [PMC free article] [PubMed]
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989014028266/su5042sup1.cif

e-71-0o121-sup1.cif (25.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989014028266/su5042Isup2.hkl

e-71-0o121-Isup2.hkl (133.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989014028266/su5042Isup3.cml

. DOI: 10.1107/S2056989014028266/su5042fig1.tif

A view of mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The intra­molecular hydrogen bond is shown as dashed line (see Table 1 for details).

a . DOI: 10.1107/S2056989014028266/su5042fig2.tif

A partial view along the a axis of the crystal packing of the title compound. The intra- and inter-mol­ecular hydrogen bonds are shown as dashed lines (see Table 1 for details; H atoms: grey balls; H atoms not involved in hydrogen bonding have been omitted for clarity).

CCDC reference: 1041593

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES