Full text
PDF![135](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7da/440842/890026c97f07/bactrev00155-0001.png)
![136](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7da/440842/107127157ac2/bactrev00155-0002.png)
![137](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7da/440842/260298027f7c/bactrev00155-0003.png)
![138](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7da/440842/df0834458b44/bactrev00155-0004.png)
![139](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7da/440842/86dca7170278/bactrev00155-0005.png)
![140](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7da/440842/078755ad81e2/bactrev00155-0006.png)
![141](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7da/440842/f5a71c4f1fb0/bactrev00155-0007.png)
![142](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7da/440842/a8633978d2f0/bactrev00155-0008.png)
![143](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7da/440842/0bb3576cfa6c/bactrev00155-0009.png)
![144](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7da/440842/f165a7cd53ae/bactrev00155-0010.png)
![145](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7da/440842/e2170f3766d9/bactrev00155-0011.png)
![146](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7da/440842/20bbecfa8a9c/bactrev00155-0012.png)
![147](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7da/440842/d947b9a8a546/bactrev00155-0013.png)
![148](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7da/440842/7086314a86a0/bactrev00155-0014.png)
![149](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7da/440842/b0287a589c85/bactrev00155-0015.png)
![150](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7da/440842/29ebbb3f217a/bactrev00155-0016.png)
![151](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7da/440842/e370cd0a1c9a/bactrev00155-0017.png)
![152](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7da/440842/dbe9e898c4b4/bactrev00155-0018.png)
![153](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7da/440842/3e6c1a443bd1/bactrev00155-0019.png)
![154](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7da/440842/ba9e4b8c1b11/bactrev00155-0020.png)
![155](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7da/440842/d4b33a097255/bactrev00155-0021.png)
![156](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7da/440842/29107861f68f/bactrev00155-0022.png)
![157](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7da/440842/d7e926f35929/bactrev00155-0023.png)
![158](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7da/440842/9e052f6ead47/bactrev00155-0024.png)
![159](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7da/440842/7332c3b9b3d9/bactrev00155-0025.png)
![160](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7da/440842/c09ad6a7a8e1/bactrev00155-0026.png)
![161](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7da/440842/324ab244e9ee/bactrev00155-0027.png)
![162](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7da/440842/78209d13656e/bactrev00155-0028.png)
![163](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7da/440842/77d03d810285/bactrev00155-0029.png)
![164](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7da/440842/8a8b6d200efb/bactrev00155-0030.png)
![165](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7da/440842/0b56420a55f2/bactrev00155-0031.png)
![166](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7da/440842/866312340f45/bactrev00155-0032.png)
![167](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7da/440842/8f6c6536f40a/bactrev00155-0033.png)
![168](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7da/440842/9010718e0752/bactrev00155-0034.png)
![169](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7da/440842/fa0e6a1eadbd/bactrev00155-0035.png)
![170](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7da/440842/ccc8f306d705/bactrev00155-0036.png)
![171](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7da/440842/8380696afdbc/bactrev00155-0037.png)
![172](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7da/440842/d1344c8ac736/bactrev00155-0038.png)
![173](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7da/440842/0bba853a5a5f/bactrev00155-0039.png)
![174](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7da/440842/3d02faf9bc1a/bactrev00155-0040.png)
![175](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7da/440842/34e4c6b7921f/bactrev00155-0041.png)
![176](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7da/440842/b2882ded54c8/bactrev00155-0042.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baker J. W., Happold F. C. The coli-tryptophan-indole reaction: Essential structural conditions for the enzymic degradation of tryptophan to indole. Biochem J. 1940 May;34(5):657–663. doi: 10.1042/bj0340657. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barger G., Walpole G. S. Isolation of the pressor principles of putrid meat. J Physiol. 1909 Mar 22;38(4):343–352. doi: 10.1113/jphysiol.1909.sp001309. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Booth V. H., Green D. E. A wet-crushing mill for micro-organisms. Biochem J. 1938 May;32(5):855–861. doi: 10.1042/bj0320855. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clifton C. E. The Utilization of Amino Acids and of Glucose by Clostridium botulinum. J Bacteriol. 1940 May;39(5):485–497. doi: 10.1128/jb.39.5.485-497.1940. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cook R. P., Woolf B. The deamination and synthesis of l-aspartic acid in the presence of bacteria. Biochem J. 1928;22(2):474–481. doi: 10.1042/bj0220474. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Devereux Woods D. Indole formation by Bacterium coli: The action of washed suspensions of Bacterium coli on indole derivatives. Biochem J. 1935 Mar;29(3):649–655. doi: 10.1042/bj0290649. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Devereux Woods D. Indole formation by Bacterium coli: The breakdown of tryptophan by washed suspensions of Bacterium coli. Biochem J. 1935 Mar;29(3):640–648. doi: 10.1042/bj0290640. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eggerth A. H., Littwin R. J., Deutsch J. V. The Determination of Histamine in Bacterial Cultures. J Bacteriol. 1939 Feb;37(2):187–203. doi: 10.1128/jb.37.2.187-203.1939. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eggerth A. H. The Production of Histamine in Bacterial Cultures. J Bacteriol. 1939 Feb;37(2):205–222. doi: 10.1128/jb.37.2.205-222.1939. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fildes P. The production of indole by suspensions of Bact. coli. Biochem J. 1938 Sep;32(9):1600–1606. doi: 10.1042/bj0321600. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gale E. F. Factors influencing bacterial deamination: Aspartase II: its occurrence in and extraction from Bacterium coli and its activation by adenosine and related compounds. Biochem J. 1938 Sep;32(9):1583–1599. doi: 10.1042/bj0321583. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gale E. F., Stephenson M. Factors influencing bacterial deamination: Factors influencing the activity of dl-serine deaminase in Bacterium coli. Biochem J. 1938 Feb;32(2):392–404. doi: 10.1042/bj0320392. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gale E. F., Stephenson M. l-Malic dehydrogenase and codehydrogenase of Bacterium coli. Biochem J. 1939 Aug;33(8):1245–1256. doi: 10.1042/bj0331245. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gale E. F. The production of amines by bacteria: The decarboxylation of amino-acids by strains of Bacterium coli. Biochem J. 1940 Mar;34(3):392–413. doi: 10.1042/bj0340392. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gale E. F. The production of amines by bacteria: The production of putrescine from l(+)-arginine by Bacterium coli in symbiosis with Streptococcus faecalis. Biochem J. 1940 Jun;34(6):853–857. doi: 10.1042/bj0340853. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gale E. F. The production of amines by bacteria: The production of tyramine by Streptococcus faecalis. Biochem J. 1940 Jun;34(6):846–852. doi: 10.1042/bj0340846. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Happold F. C., Hoyle L. The coli-tryptophan-indole reaction: Enzyme preparations and their action on tryptophan and some indole derivatives. Biochem J. 1935 Aug;29(8):1918–1926. doi: 10.1042/bj0291918. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hills G. M. Ammonia production by pathogenic bacteria. Biochem J. 1940 Jul;34(7):1057–1069. doi: 10.1042/bj0341057. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoogerheide J. C., Kocholaty W. Metabolism of the strict anaerobes (genus: Clostridium): Reduction of amino-acids with gaseous hydrogen by suspensions of Cl. sporogenes. Biochem J. 1938 Jun;32(6):949–957. doi: 10.1042/bj0320949. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hopkins F. G., Cole S. W. A contribution to the chemistry of proteids: Part II. The constitution of tryptophane, and the action of bacteria upon it. J Physiol. 1903 Jun 15;29(4-5):451–466. doi: 10.1113/jphysiol.1903.sp000968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kocholaty W., Hoogerheide J. C. Studies of the metabolism of the strict anaerobes (genus: Clostridium): Dehydrogenation reactions by suspensions of Cl. sporogenes. Biochem J. 1938 Mar;32(3):437–448. doi: 10.1042/bj0320437. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krebs H. A. Metabolism of amino-acids: Deamination of amino-acids. Biochem J. 1935 Jul;29(7):1620–1644. doi: 10.1042/bj0291620. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krebs H. A. Metabolism of amino-acids: The synthesis of glutamine from glutamic acid and ammonia, and the enzymic hydrolysis of glutamine in animal tissues. Biochem J. 1935 Aug;29(8):1951–1969. doi: 10.1042/bj0291951. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mellanby E., Twort F. W. On the presence of beta-imidazolethylamine in the intestinal wall; with a method of isolating a bacillus from the alimentary canal which converts histidine into this substance. J Physiol. 1912 Aug 2;45(1-2):53–60. doi: 10.1113/jphysiol.1912.sp001534. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Quastel J. H., Whetham M. D. Dehydrogenations produced by resting Bacteria. I. Biochem J. 1925;19(3):520–531. doi: 10.1042/bj0190520. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Quastel J. H., Whetham M. D. The Equilibria existing between Succinic, Fumaric, and Malic Acids in the presence of Resting Bacteria. Biochem J. 1924;18(3-4):519–534. doi: 10.1042/bj0180519. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Quastel J. H., Woolf B. The Equilibrium between l-Aspartic Acid, Fumaric Acid and Ammonia in Presence of Resting Bacteria. Biochem J. 1926;20(3):545–555. doi: 10.1042/bj0200545. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raistrick H., Clark A. B. Studies on the Cycloclastic Power of Bacteria: Part II. A Quantitative Study of the Aerobic Decomposition of Tryptophan and Tyrosine by Bacteria. Biochem J. 1921;15(1):76–82. doi: 10.1042/bj0150076. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stephenson M., Gale E. F. Factors influencing bacterial deamination: The deamination of glycine, dl-alanine and l-glutamic acid by Bacterium coli. Biochem J. 1937 Aug;31(8):1316–1322.1. doi: 10.1042/bj0311316. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stephenson M. On lactic dehydrogenase: A cell-free enzyme preparation obtained from bacteria. Biochem J. 1928;22(2):605–614. doi: 10.1042/bj0220605. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stickland L. H. Studies in the metabolism of the strict anaerobes (genus Clostridium): The chemical reactions by which Cl. sporogenes obtains its energy. Biochem J. 1934;28(5):1746–1759. doi: 10.1042/bj0281746. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stickland L. H. Studies in the metabolism of the strict anaerobes (genus Clostridium): The oxidation of alanine by Cl. sporogenes. IV. The reduction of glycine by Cl. sporogenes. Biochem J. 1935 Apr;29(4):889–898. doi: 10.1042/bj0290889. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tarr H. L. The anaerobic decomposition of l-cystine by washed cells of Proteus vulgaris. Biochem J. 1933;27(3):759–763. doi: 10.1042/bj0270759. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Virtanen A. I., Laine T. Investigations on the root nodule bacteria of leguminous plants: The excretion products of root modules. The mechanism of N-fixation. Biochem J. 1939 Apr;33(4):412–427. doi: 10.1042/bj0330412. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Woods D. D., Clifton C. E. Studies in the metabolism of the strict anaerobes (genus Clostridium): Hydrogen production and amino-acid utilization by Clostridium tetanomorphum. Biochem J. 1937 Oct;31(10):1774–1788. doi: 10.1042/bj0311774. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Woods D. D., Clifton C. E. Studies in the metabolism of the strict anaerobes (genus Clostridium): The decomposition of pyruvate and l-(+)glutamate by Clostridium tetanomorphum. Biochem J. 1938 Feb;32(2):345–356. doi: 10.1042/bj0320345. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Woods D. D. Studies in the metabolism of the strict anaerobes (genus Clostridium): Further experiments on the coupled reactions between pairs of amino-acids induced by Cl. sporogenes. Biochem J. 1936 Oct;30(10):1934–1946. doi: 10.1042/bj0301934. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wooldridge W. R., Knox R., Glass V. Variability in the activity of bacterial enzymes: The effect of the age of the culture. Biochem J. 1936 May;30(5):926–931. doi: 10.1042/bj0300926. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Woolf B. Some enzymes in B. coli communis which act on fumaric acid. Biochem J. 1929;23(3):472–482. doi: 10.1042/bj0230472. [DOI] [PMC free article] [PubMed] [Google Scholar]