Skip to main content
Bacteriological Reviews logoLink to Bacteriological Reviews
. 1940 Sep;4(3):135–176. doi: 10.1128/br.4.3.135-176.1940

ENZYMES CONCERNED IN THE PRIMARY UTILIZATION OF AMINO ACIDS BY BACTERIA

Ernest Frederick Gale 1,1
PMCID: PMC440842  PMID: 16350063

Full text

PDF
138

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker J. W., Happold F. C. The coli-tryptophan-indole reaction: Essential structural conditions for the enzymic degradation of tryptophan to indole. Biochem J. 1940 May;34(5):657–663. doi: 10.1042/bj0340657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barger G., Walpole G. S. Isolation of the pressor principles of putrid meat. J Physiol. 1909 Mar 22;38(4):343–352. doi: 10.1113/jphysiol.1909.sp001309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Booth V. H., Green D. E. A wet-crushing mill for micro-organisms. Biochem J. 1938 May;32(5):855–861. doi: 10.1042/bj0320855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Clifton C. E. The Utilization of Amino Acids and of Glucose by Clostridium botulinum. J Bacteriol. 1940 May;39(5):485–497. doi: 10.1128/jb.39.5.485-497.1940. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cook R. P., Woolf B. The deamination and synthesis of l-aspartic acid in the presence of bacteria. Biochem J. 1928;22(2):474–481. doi: 10.1042/bj0220474. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Devereux Woods D. Indole formation by Bacterium coli: The action of washed suspensions of Bacterium coli on indole derivatives. Biochem J. 1935 Mar;29(3):649–655. doi: 10.1042/bj0290649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Devereux Woods D. Indole formation by Bacterium coli: The breakdown of tryptophan by washed suspensions of Bacterium coli. Biochem J. 1935 Mar;29(3):640–648. doi: 10.1042/bj0290640. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Eggerth A. H., Littwin R. J., Deutsch J. V. The Determination of Histamine in Bacterial Cultures. J Bacteriol. 1939 Feb;37(2):187–203. doi: 10.1128/jb.37.2.187-203.1939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Eggerth A. H. The Production of Histamine in Bacterial Cultures. J Bacteriol. 1939 Feb;37(2):205–222. doi: 10.1128/jb.37.2.205-222.1939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fildes P. The production of indole by suspensions of Bact. coli. Biochem J. 1938 Sep;32(9):1600–1606. doi: 10.1042/bj0321600. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gale E. F. Factors influencing bacterial deamination: Aspartase II: its occurrence in and extraction from Bacterium coli and its activation by adenosine and related compounds. Biochem J. 1938 Sep;32(9):1583–1599. doi: 10.1042/bj0321583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gale E. F., Stephenson M. Factors influencing bacterial deamination: Factors influencing the activity of dl-serine deaminase in Bacterium coli. Biochem J. 1938 Feb;32(2):392–404. doi: 10.1042/bj0320392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gale E. F., Stephenson M. l-Malic dehydrogenase and codehydrogenase of Bacterium coli. Biochem J. 1939 Aug;33(8):1245–1256. doi: 10.1042/bj0331245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gale E. F. The production of amines by bacteria: The decarboxylation of amino-acids by strains of Bacterium coli. Biochem J. 1940 Mar;34(3):392–413. doi: 10.1042/bj0340392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gale E. F. The production of amines by bacteria: The production of putrescine from l(+)-arginine by Bacterium coli in symbiosis with Streptococcus faecalis. Biochem J. 1940 Jun;34(6):853–857. doi: 10.1042/bj0340853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gale E. F. The production of amines by bacteria: The production of tyramine by Streptococcus faecalis. Biochem J. 1940 Jun;34(6):846–852. doi: 10.1042/bj0340846. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Happold F. C., Hoyle L. The coli-tryptophan-indole reaction: Enzyme preparations and their action on tryptophan and some indole derivatives. Biochem J. 1935 Aug;29(8):1918–1926. doi: 10.1042/bj0291918. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hills G. M. Ammonia production by pathogenic bacteria. Biochem J. 1940 Jul;34(7):1057–1069. doi: 10.1042/bj0341057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hoogerheide J. C., Kocholaty W. Metabolism of the strict anaerobes (genus: Clostridium): Reduction of amino-acids with gaseous hydrogen by suspensions of Cl. sporogenes. Biochem J. 1938 Jun;32(6):949–957. doi: 10.1042/bj0320949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hopkins F. G., Cole S. W. A contribution to the chemistry of proteids: Part II. The constitution of tryptophane, and the action of bacteria upon it. J Physiol. 1903 Jun 15;29(4-5):451–466. doi: 10.1113/jphysiol.1903.sp000968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kocholaty W., Hoogerheide J. C. Studies of the metabolism of the strict anaerobes (genus: Clostridium): Dehydrogenation reactions by suspensions of Cl. sporogenes. Biochem J. 1938 Mar;32(3):437–448. doi: 10.1042/bj0320437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Krebs H. A. Metabolism of amino-acids: Deamination of amino-acids. Biochem J. 1935 Jul;29(7):1620–1644. doi: 10.1042/bj0291620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Krebs H. A. Metabolism of amino-acids: The synthesis of glutamine from glutamic acid and ammonia, and the enzymic hydrolysis of glutamine in animal tissues. Biochem J. 1935 Aug;29(8):1951–1969. doi: 10.1042/bj0291951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Mellanby E., Twort F. W. On the presence of beta-imidazolethylamine in the intestinal wall; with a method of isolating a bacillus from the alimentary canal which converts histidine into this substance. J Physiol. 1912 Aug 2;45(1-2):53–60. doi: 10.1113/jphysiol.1912.sp001534. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Quastel J. H., Whetham M. D. Dehydrogenations produced by resting Bacteria. I. Biochem J. 1925;19(3):520–531. doi: 10.1042/bj0190520. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Quastel J. H., Whetham M. D. The Equilibria existing between Succinic, Fumaric, and Malic Acids in the presence of Resting Bacteria. Biochem J. 1924;18(3-4):519–534. doi: 10.1042/bj0180519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Quastel J. H., Woolf B. The Equilibrium between l-Aspartic Acid, Fumaric Acid and Ammonia in Presence of Resting Bacteria. Biochem J. 1926;20(3):545–555. doi: 10.1042/bj0200545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Raistrick H., Clark A. B. Studies on the Cycloclastic Power of Bacteria: Part II. A Quantitative Study of the Aerobic Decomposition of Tryptophan and Tyrosine by Bacteria. Biochem J. 1921;15(1):76–82. doi: 10.1042/bj0150076. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Stephenson M., Gale E. F. Factors influencing bacterial deamination: The deamination of glycine, dl-alanine and l-glutamic acid by Bacterium coli. Biochem J. 1937 Aug;31(8):1316–1322.1. doi: 10.1042/bj0311316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Stephenson M. On lactic dehydrogenase: A cell-free enzyme preparation obtained from bacteria. Biochem J. 1928;22(2):605–614. doi: 10.1042/bj0220605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Stickland L. H. Studies in the metabolism of the strict anaerobes (genus Clostridium): The chemical reactions by which Cl. sporogenes obtains its energy. Biochem J. 1934;28(5):1746–1759. doi: 10.1042/bj0281746. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Stickland L. H. Studies in the metabolism of the strict anaerobes (genus Clostridium): The oxidation of alanine by Cl. sporogenes. IV. The reduction of glycine by Cl. sporogenes. Biochem J. 1935 Apr;29(4):889–898. doi: 10.1042/bj0290889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Tarr H. L. The anaerobic decomposition of l-cystine by washed cells of Proteus vulgaris. Biochem J. 1933;27(3):759–763. doi: 10.1042/bj0270759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Virtanen A. I., Laine T. Investigations on the root nodule bacteria of leguminous plants: The excretion products of root modules. The mechanism of N-fixation. Biochem J. 1939 Apr;33(4):412–427. doi: 10.1042/bj0330412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Woods D. D., Clifton C. E. Studies in the metabolism of the strict anaerobes (genus Clostridium): Hydrogen production and amino-acid utilization by Clostridium tetanomorphum. Biochem J. 1937 Oct;31(10):1774–1788. doi: 10.1042/bj0311774. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Woods D. D., Clifton C. E. Studies in the metabolism of the strict anaerobes (genus Clostridium): The decomposition of pyruvate and l-(+)glutamate by Clostridium tetanomorphum. Biochem J. 1938 Feb;32(2):345–356. doi: 10.1042/bj0320345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Woods D. D. Studies in the metabolism of the strict anaerobes (genus Clostridium): Further experiments on the coupled reactions between pairs of amino-acids induced by Cl. sporogenes. Biochem J. 1936 Oct;30(10):1934–1946. doi: 10.1042/bj0301934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Wooldridge W. R., Knox R., Glass V. Variability in the activity of bacterial enzymes: The effect of the age of the culture. Biochem J. 1936 May;30(5):926–931. doi: 10.1042/bj0300926. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Woolf B. Some enzymes in B. coli communis which act on fumaric acid. Biochem J. 1929;23(3):472–482. doi: 10.1042/bj0230472. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Bacteriological Reviews are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES