Full text
PDF![181](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2341/441220/9284b9a265b6/bactrev00141-0091.png)
![182](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2341/441220/73e8d2dcf3fa/bactrev00141-0092.png)
![183](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2341/441220/01f01c8079ac/bactrev00141-0093.png)
![184](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2341/441220/4f2638136d56/bactrev00141-0094.png)
![185](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2341/441220/2d2b45dacb92/bactrev00141-0095.png)
![186](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2341/441220/c9571d86143e/bactrev00141-0096.png)
![187](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2341/441220/cbfa24828b89/bactrev00141-0097.png)
![188](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2341/441220/8d595ef1331d/bactrev00141-0098.png)
![189](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2341/441220/1c4f0099f6ce/bactrev00141-0099.png)
![190](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2341/441220/ad4620b8a716/bactrev00141-0100.png)
![191](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2341/441220/20ad4896dbf4/bactrev00141-0101.png)
![192](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2341/441220/125a7153e1e8/bactrev00141-0102.png)
![193](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2341/441220/14a42e30d4c8/bactrev00141-0103.png)
![194](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2341/441220/cf8cfec38615/bactrev00141-0104.png)
![195](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2341/441220/d3135d4bbc24/bactrev00141-0105.png)
![196](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2341/441220/2d00a263f29b/bactrev00141-0106.png)
![197](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2341/441220/51835117baa1/bactrev00141-0107.png)
![198](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2341/441220/c10c34221309/bactrev00141-0108.png)
![199](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2341/441220/feadf41cabd5/bactrev00141-0109.png)
![200](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2341/441220/b0ec832730cc/bactrev00141-0110.png)
![201](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2341/441220/dca3ee44d2c6/bactrev00141-0111.png)
![202](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2341/441220/253d4158fa4a/bactrev00141-0112.png)
![203](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2341/441220/68323b35ec52/bactrev00141-0113.png)
![204](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2341/441220/ab1cf8a3fb7f/bactrev00141-0114.png)
![205](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2341/441220/628fe7b27d44/bactrev00141-0115.png)
![206](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2341/441220/edd0a6969d37/bactrev00141-0116.png)
![207](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2341/441220/83f2a669499d/bactrev00141-0117.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- CAMPBELL A. G. A germination inhibitor and root-growth retarder in chou moellier (Brassica oleracea var.). Nature. 1959 May 2;183(4670):1263–1264. doi: 10.1038/1831263a0. [DOI] [PubMed] [Google Scholar]
- CURTIS R. W. Root curvatures induced by culture filtrates of Aspergillus niger. Science. 1958 Sep 19;128(3325):661–662. doi: 10.1126/science.128.3325.661. [DOI] [PubMed] [Google Scholar]
- Chang H. T., Loomis W. E. EFFECT OF CARBON DIOXIDE ON ABSORPTION OF WATER AND NUTRIENTS BY ROOTS. Plant Physiol. 1945 Apr;20(2):221–232. doi: 10.1104/pp.20.2.221. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cox L. G., Munger H. M., Smith E. A. A GERMINATION INHIBITOR IN THE SEED COATS OF CERTAIN VARIETIES OF CABBAGE. Plant Physiol. 1945 Apr;20(2):289–294. doi: 10.1104/pp.20.2.289. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Curtis R. W. Curvatures and Malformations in Bean Plants Caused by Culture Filtrate of Aspergillus niger. Plant Physiol. 1958 Jan;33(1):17–22. doi: 10.1104/pp.33.1.17. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Curtis R. W. Translocatable Plant Growth Inhibitors Produced by Penicillium Thomii and Arachniotus trisporus. Plant Physiol. 1957 Jan;32(1):56–59. doi: 10.1104/pp.32.1.56. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Engard C. J., Nakata A. H. A Growth Inhibitor and a Growth Promotor in Sugar Cane. Science. 1947 May 30;105(2735):577–580. doi: 10.1126/science.105.2735.577-a. [DOI] [PubMed] [Google Scholar]
- GROSSBARD E. Antibiotic production by fungi on organic manures and in soil. J Gen Microbiol. 1952 May;6(3-4):295–310. doi: 10.1099/00221287-6-3-4-295. [DOI] [PubMed] [Google Scholar]
- JEFFERYS E. G. The stability of antibiotics in soils. J Gen Microbiol. 1952 Nov;7(3-4):295–312. doi: 10.1099/00221287-7-3-4-295. [DOI] [PubMed] [Google Scholar]
- Key J. L., Galitz D. S. Growth Inhibitor in Immature Soybean Seeds and 2,4-D-Sprayed Soybean Seedlings. Science. 1959 Nov 13;130(3385):1340–1341. doi: 10.1126/science.130.3385.1340. [DOI] [PubMed] [Google Scholar]
- Klein A. O., Hagen C. W. Anthocyanin production in detached petals of impatiens balsamina L. Plant Physiol. 1961 Jan;36(1):1–9. doi: 10.1104/pp.36.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOCHHEAD A. G. Soil bacteria and growth-promoting substances. Bacteriol Rev. 1958 Sep;22(3):145–153. doi: 10.1128/br.22.3.145-153.1958. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LORING H. S., WARITZ R. S. Occurrence of iron, copper, calcium, and magnesium in tobacco mosaic virus. Science. 1957 Apr 5;125(3249):646–648. doi: 10.1126/science.125.3249.646-a. [DOI] [PubMed] [Google Scholar]
- McCalla T. M., Duley F. L. Stubble Mulch Studies: Effect of Sweetclover Extract on Corn Germination. Science. 1948 Aug 13;108(2798):163–163. doi: 10.1126/science.108.2798.163. [DOI] [PubMed] [Google Scholar]
- Norstadt F. A., McCalla T. M. Phytotoxic Substance from a Species of Penicillium. Science. 1963 Apr 26;140(3565):410–411. doi: 10.1126/science.140.3565.410. [DOI] [PubMed] [Google Scholar]
- Persidsky D. J., Wilde S. A. The Effect of Volatile Substances Released by Soil, Humus, and Composts on the Growth of Excised Roots. Plant Physiol. 1954 Sep;29(5):484–486. doi: 10.1104/pp.29.5.484. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ryan G. F., Greenblatt G., Al-Delaimy K. A. Seedling Albinism Induced by an Extract of Alternaria tenuis. Science. 1961 Sep 22;134(3482):833–834. doi: 10.1126/science.134.3482.833. [DOI] [PubMed] [Google Scholar]
- STALLINGS J. H. Soil produced antibiotics; plant disease and insect control. Bacteriol Rev. 1954 Jun;18(2):131–146. doi: 10.1128/br.18.2.131-146.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
- STARKEY R. L. Interrelations between microorganisms and plant roots in the rhizosphere. Bacteriol Rev. 1958 Sep;22(3):154–172. doi: 10.1128/br.22.3.154-172.1958. [DOI] [PMC free article] [PubMed] [Google Scholar]
- STEVENSON I. L. Antibiotic production by actinomycetes in soil demonstrated by morphological changes induced in Helminthospo rium sativum. Nature. 1954 Sep 25;174(4430):598–599. doi: 10.1038/174598b0. [DOI] [PubMed] [Google Scholar]
- STUBBS J., WAY A. M. Uptake of antibiotic metabolites of soil microorganisms by plants. Nature. 1951 Mar 3;167(4244):347–349. doi: 10.1038/167347a0. [DOI] [PubMed] [Google Scholar]
- Stolwijk J. A., Thimann K. V. On the Uptake of Carbon Dioxide and Bicarbonate by Roots, and Its Influence on Growth. Plant Physiol. 1957 Nov;32(6):513–520. doi: 10.1104/pp.32.6.513. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takahashi N., Curtis R. W. Isolation & characterization of malformin. Plant Physiol. 1961 Jan;36(1):30–36. doi: 10.1104/pp.36.1.30. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WRIGHT J. M. Production of gliotoxin in soils. Nature. 1956 May 12;177(4515):896–896. doi: 10.1038/177896a0. [DOI] [PubMed] [Google Scholar]