Skip to main content
Bacteriological Reviews logoLink to Bacteriological Reviews
. 1964 Sep;28(3):330–366. doi: 10.1128/br.28.3.330-366.1964

THE GROUP D STREPTOCOCCI1

R H Deibel a,2
PMCID: PMC441228  PMID: 14220658

Full text

PDF
333

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ABRAMS A. O-acetyl groups in the cell wall of Streptococcus faecalis. J Biol Chem. 1958 Feb;230(2):949–959. [PubMed] [Google Scholar]
  2. ARMSTRONG J. J., BADDILEY J., BUCHANAN J. G., DAVISION A. L., KELEMEN M. V., NEUHAUS F. C. Composition of teichoic acids from a number of bacterial walls. Nature. 1959 Jul 25;184:247–248. doi: 10.1038/184247a0. [DOI] [PubMed] [Google Scholar]
  3. BACHRACH U., SEGAL M., ROZANSKY R. Effect of tetracyclines on formation of amines by bacteria. Proc Soc Exp Biol Med. 1958 Apr;97(4):874–876. doi: 10.3181/00379727-97-23906. [DOI] [PubMed] [Google Scholar]
  4. BAILEY R. W., OXFORD A. E. A quantitative study of the production of dextran from sucrose by rumen strains of Streptococcus bovis. J Gen Microbiol. 1958 Aug;19(1):130–145. doi: 10.1099/00221287-19-1-130. [DOI] [PubMed] [Google Scholar]
  5. BAILEY R. W., OXFORD A. E. Prerequisites for dextran production by Streptococcus bovis. Nature. 1958 Jul 19;182(4629):185–186. doi: 10.1038/182185a0. [DOI] [PubMed] [Google Scholar]
  6. BAILEY R. W. Transglucosidase activity of rumen strains of Streptococcus bovis. 2. Isolation and properties of dextransucrase. Biochem J. 1959 May;72(1):42–49. doi: 10.1042/bj0720042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. BARNES E. M., INGRAM M. The identity and origin of faecal streptococci in canned hams. Ann Inst Pasteur Lille. 1955;7:115–119. [PubMed] [Google Scholar]
  8. BARNES E. M. Tetrazolium reduction as a means of differentiating Streptococcus faecalis from Streptococcus faecium. J Gen Microbiol. 1956 Feb;14(1):57–68. doi: 10.1099/00221287-14-1-57. [DOI] [PubMed] [Google Scholar]
  9. BARNES I. J., SEELEY H. W., VANDEMARK P. J. Nutrition of Streptococcus bovis in relation to dextran formation. J Bacteriol. 1961 Jul;82:85–93. doi: 10.1128/jb.82.1.85-93.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. BARTLEY C. H., SLANETZ L. W. Types and sanitary significance of fecal Streptococci isolated from feces, sewage, and water. Am J Public Health Nations Health. 1960 Oct;50:1545–1552. doi: 10.2105/ajph.50.10.1545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. BAUCHOP T., ELSDEN S. R. The growth of micro-organisms in relation to their energy supply. J Gen Microbiol. 1960 Dec;23:457–469. doi: 10.1099/00221287-23-3-457. [DOI] [PubMed] [Google Scholar]
  12. BIBB W. R., STRAUGHN W. R. Formation of protoplasts from Streptococcus faecalis by lysozyme. J Bacteriol. 1962 Nov;84:1094–1098. doi: 10.1128/jb.84.5.1094-1098.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. BRAUDE A. I., SANFORD J. P., BARTLETT J., FELTES J. Clotting of citrated plasma by bacteria which destroy the anticoagulant; effect of sodium fluoroacetate. Proc Soc Exp Biol Med. 1953 Apr;82(4):742–745. doi: 10.3181/00379727-82-20233. [DOI] [PubMed] [Google Scholar]
  14. BUTTIAUX R. Les streptocoques fécaux des intestins humains et animaux. Ann Inst Pasteur (Paris) 1958 Jun;94(6):778–782. [PubMed] [Google Scholar]
  15. Barker H. A. Streptococcus allantoicus and the Fermentation of Allantoin. J Bacteriol. 1943 Sep;46(3):251–259. doi: 10.1128/jb.46.3.251-259.1943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. CAMPBELL J. N., EVANS J. B., PERRY J. J., NIVEN C. F., Jr An extracellular material elaborated by Micrococcus sodonensis. J Bacteriol. 1961 Dec;82:828–837. doi: 10.1128/jb.82.6.828-837.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. CARUBELLI R., RYAN L. C., TRUCCO R. E., CAPUTTO R. Neuramin-lactose sulfate, a new compound isolated from the mammary gland of rats. J Biol Chem. 1961 Sep;236:2381–2388. [PubMed] [Google Scholar]
  18. CATLIN B. W., CUNNINGHAM L. S. Studies of extracellular and intracellular bacterial deoxyribonucleic acids. J Gen Microbiol. 1958 Dec;19(3):522–539. doi: 10.1099/00221287-19-3-522. [DOI] [PubMed] [Google Scholar]
  19. CHESBRO W. R., EVANS J. B. Factors affecting the growth of enterococci in highly alkaline media. J Bacteriol. 1959 Dec;78:858–862. doi: 10.1128/jb.78.6.858-862.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. CLARIDGE C. A., HENDLIN D. Oxidation of glycerol by Streptococcus faecalis. J Bacteriol. 1962 Dec;84:1181–1186. doi: 10.1128/jb.84.6.1181-1186.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. COOPER K. E., RAMADAN F. M. Studies in the differentiation between human and animal pollution by means of faecal streptococci. J Gen Microbiol. 1955 Apr;12(2):180–190. doi: 10.1099/00221287-12-2-180. [DOI] [PubMed] [Google Scholar]
  22. CUMMINS C. S., HARRIS H. The chemical composition of the cell wall in some gram-positive bacteria and its possible value as a taxonomic character. J Gen Microbiol. 1956 Jul;14(3):583–600. doi: 10.1099/00221287-14-3-583. [DOI] [PubMed] [Google Scholar]
  23. Campbell J. J., Gunsalus I. C. Citric Acid Fermentation by Streptococci and Lactobacilli. J Bacteriol. 1944 Jul;48(1):71–76. doi: 10.1128/jb.48.1.71-76.1944. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. DACK G. M., NIVEN C. F., Jr Feeding tests on human volunteers with enterococci and tyramine. J Infect Dis. 1949 Sep–Oct;85(2):131–138. doi: 10.1093/infdis/85.2.131. [DOI] [PubMed] [Google Scholar]
  25. DAIN J. A., NEAL A. L., SEELEY H. W. The effect of carbon dioxide on polysaccharide production by Streptococcus bovis. J Bacteriol. 1956 Aug;72(2):209–213. doi: 10.1128/jb.72.2.209-213.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. DAVIS R. J., HUTNER S. H., SEAMAN G. R., STOKSTAD E. L. Assay of thioctic acid. Methods Biochem Anal. 1956;3:23–47. doi: 10.1002/9780470110195.ch2. [DOI] [PubMed] [Google Scholar]
  27. DEIBEL R. H., EVANS J. B. Modified benzidine test for the detection of cytochrome-containing respiratory systems in microorganisms. J Bacteriol. 1960 Mar;79:356–360. doi: 10.1128/jb.79.3.356-360.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. DEIBEL R. H. HYDROLYSIS OF PROTEINS AND NUCLEIC ACIDS BY LANCEFIELD GROUP A AND OTHER STREPTOCOCCI. J Bacteriol. 1963 Dec;86:1270–1274. doi: 10.1128/jb.86.6.1270-1274.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. DEIBEL R. H., LAKE D. E., NIVEN C. F., Jr PHYSIOLOGY OF THE ENTEROCOCCI AS RELATED TO THEIR TAXONOMY. J Bacteriol. 1963 Dec;86:1275–1282. doi: 10.1128/jb.86.6.1275-1282.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. DEIBEL R. H., NIVEN C. F., Jr PYRUVATE FERMENTATION BY STREPTOCOCCUS FAECALIS. J Bacteriol. 1964 Jul;88:4–10. doi: 10.1128/jb.88.1.4-10.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. DEIBEL R. H., SILLIKER J. H. FOOD-POISONING POTENTIAL OF THE ENTEROCOCCI. J Bacteriol. 1963 Apr;85:827–832. doi: 10.1128/jb.85.4.827-832.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. DELWICHE E. A. Catalase of Pedicoccus cerevisiae. J Bacteriol. 1961 Mar;81:416–418. doi: 10.1128/jb.81.3.416-418.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. DUNICAN L. K., SEELEY H. W. Starch hydrolysis by Strepto-coccus equinus. J Bacteriol. 1962 Feb;83:264–269. doi: 10.1128/jb.83.2.264-269.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Deibel R. H. Utilization of arginine as an energy source for the growth of Streptococcus faecalis. J Bacteriol. 1964 May;87(5):988–992. doi: 10.1128/jb.87.5.988-992.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. ELLIOTT S. D. Type and group polysaccharides of group D streptococci. J Exp Med. 1960 May 1;111:621–630. doi: 10.1084/jem.111.5.621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. EVANS J. B., BUETTNER L. G., NIVEN C. F., Jr Occurrence of streptococci that give a false-positive coagulase test. J Bacteriol. 1952 Sep;64(3):433–434. doi: 10.1128/jb.64.3.433-434.1952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Evans A. C., Chinn A. L. The Enterococci: With Special Reference to Their Association with Human Disease. J Bacteriol. 1947 Oct;54(4):495–512. doi: 10.1128/jb.54.4.495-512.1947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. FORD J. E., PERRY K. D., BRIGGS C. A. Nutrition of lactic acid bacteria isolated from the rumen. J Gen Microbiol. 1958 Feb;18(1):273–284. doi: 10.1099/00221287-18-1-273. [DOI] [PubMed] [Google Scholar]
  39. FUKUYAMA T. T., O'KANE D. J. Galactose metabolism. I. Pathway of carbon in fermentation by Streptococcus faecalis. J Bacteriol. 1962 Oct;84:793–796. doi: 10.1128/jb.84.4.793-796.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. FULLER R., NEWLAND L. G. The serological grouping of three strains of Streptococcus equinus. J Gen Microbiol. 1963 Jun;31:431–434. doi: 10.1099/00221287-31-3-431. [DOI] [PubMed] [Google Scholar]
  41. GRAUDAL H. On the serology of motile Streptococci. Acta Pathol Microbiol Scand. 1957;41(5):397–402. doi: 10.1111/j.1699-0463.1957.tb01041.x. [DOI] [PubMed] [Google Scholar]
  42. GRAUDAL H. The classification of motile Streptococci within the Enterococcus group. Acta Pathol Microbiol Scand. 1957;41(5):403–410. doi: 10.1111/j.1699-0463.1957.tb01042.x. [DOI] [PubMed] [Google Scholar]
  43. GUNSALUS I. C. Oxidative and transfer reactions of lipoic acid. Fed Proc. 1954 Sep;13(3):715–722. [PubMed] [Google Scholar]
  44. GUNSALUS I. C. The chemistry and function of the pyruvate oxidation factor (lipoic acid). J Cell Physiol Suppl. 1953 Mar;41(Suppl 1):113–136. doi: 10.1002/jcp.1030410409. [DOI] [PubMed] [Google Scholar]
  45. GUTHOF O. Streptokokken und Dysbakterie-Problem. Zentralbl Bakteriol Orig. 1957 Nov;170(1-5):327–333. [PubMed] [Google Scholar]
  46. Gale E. F. The production of amines by bacteria: The production of tyramine by Streptococcus faecalis. Biochem J. 1940 Jun;34(6):846–852. doi: 10.1042/bj0340846. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Gunsalus I. C., Campbell J. J. Diversion of the Lactic Acid Fermentation with Oxidized Substrate. J Bacteriol. 1944 Oct;48(4):455–461. doi: 10.1128/jb.48.4.455-461.1944. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Gunsalus I. C. Products of Anaerobic Glycerol Fermentation by Streptococci faecalis. J Bacteriol. 1947 Aug;54(2):239–244. doi: 10.1128/jb.54.2.239-244.1947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Gunsalus I. C., Sherman J. M. The Fermentation of Glycerol by Streptococci. J Bacteriol. 1943 Feb;45(2):155–162. doi: 10.1128/jb.45.2.155-162.1943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Gunsalus I. C., Umbreit W. W. The Oxidation of Glycerol by Streptococcus faecalis. J Bacteriol. 1945 Apr;49(4):347–357. doi: 10.1128/jb.49.4.347-357.1945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. HAMMEL J. M., ZIMMERMAN L. N. GROWTH STIMULATION OF STREPTOCOCCUS FAECALIS VAR. LIQUEFACIENS BY CANAVANINE. J Bacteriol. 1963 Sep;86:490–493. doi: 10.1128/jb.86.3.490-493.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. HARTMAN R. E., ZIMMERMAN L. N., RABIN R. Proteinase biosynthesis by Streptococcus liquefaciens. II. Purine, pyrimidine, and vitamin requirements. Can J Microbiol. 1957 Jun;3(4):553–558. doi: 10.1139/m57-060. [DOI] [PubMed] [Google Scholar]
  53. HIJMANS W. Absence of the group-specific and the cell-wall polysaccharide antigen in L-phase variants of group D streptococci. J Gen Microbiol. 1962 Apr;28:177–179. doi: 10.1099/00221287-28-1-177. [DOI] [PubMed] [Google Scholar]
  54. HIJMANS W., KASTELEIN M. J. The production of L forms of enterococci. Ann N Y Acad Sci. 1960 Jan 15;79:371–373. doi: 10.1111/j.1749-6632.1960.tb42698.x. [DOI] [PubMed] [Google Scholar]
  55. HILL C. H. Studies on the inhibition of growth of Streptococcus faecalis by sodium propionate. J Biol Chem. 1952 Nov;199(1):329–332. [PubMed] [Google Scholar]
  56. HOKAMA Y., SALLE A. J. Studies on the metabolism of bile acids by the members of the Enterobacteriaceae and Streptococcus faecalis. J Bacteriol. 1958 Feb;75(2):130–134. doi: 10.1128/jb.75.2.130-134.1958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. HOLDEN J. T., WILDMAN R. B., SNELL E. E. Growth promotion by keto and hydroxy acids and its relation to vitamin B6. J Biol Chem. 1951 Aug;191(2):559–576. [PubMed] [Google Scholar]
  58. HUGH R. Motile streptococci isolated from the oropharyngeal region. Can J Microbiol. 1959 Aug;5:351–354. doi: 10.1139/m59-043. [DOI] [PubMed] [Google Scholar]
  59. Hills G. M. Ammonia production by pathogenic bacteria. Biochem J. 1940 Jul;34(7):1057–1069. doi: 10.1042/bj0341057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. IKAWA M. The partial chemical degradation of the cell walls of Lactobacillus plantarum, Streptococcus faecalis, and Lactobacillus casei. J Biol Chem. 1961 Apr;236:1087–1092. [PubMed] [Google Scholar]
  61. JACOBS N. J., VANDEMARK P. J. Comparison of the mechanism of glycerol oxidation in aerobically and anaerobically grown Streptococcus faecalis. J Bacteriol. 1960 Apr;79:532–538. doi: 10.1128/jb.79.4.532-538.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. JONES D., DEIBEL R. H., NIVEN C. F., Jr Identity of Staphylococcus epidermidis. J Bacteriol. 1963 Jan;85:62–67. doi: 10.1128/jb.85.1.62-67.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. JONES D., SHATTOCK P. M. The location of the group antigen of group D Streptococcus. J Gen Microbiol. 1960 Oct;23:335–343. doi: 10.1099/00221287-23-2-335. [DOI] [PubMed] [Google Scholar]
  64. Jones M. E. Carbamyl Phosphate: Many forms of life use this molecule to synthesize arginine, uracil, and adenosine triphosphate. Science. 1963 Jun 28;140(3574):1373–1379. doi: 10.1126/science.140.3574.1373. [DOI] [PubMed] [Google Scholar]
  65. KENNER B. A., CLARK H. F., KABLER P. W. Fecal Streptococci. II. Quantification of Streptococci in feces. Am J Public Health Nations Health. 1960 Oct;50:1553–1559. doi: 10.2105/ajph.50.10.1553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. KIHARA H., PRESCOTT J. M., SNELL E. E. The bacterial cleavage of canavanine to homoserine and guanidine. J Biol Chem. 1955 Nov;217(1):497–503. [PubMed] [Google Scholar]
  67. KIHARA H., SNELL E. E. The enzymatic cleavage of canavanine to O-ureidohomoserine and ammonia. J Biol Chem. 1957 May;226(1):485–495. [PubMed] [Google Scholar]
  68. KLINE L., PINE L., BARKER H. A. METABOLIC ROLE OF THE BR FACTOR IN BUTYRIBACTERIUM RETTGERI. J Bacteriol. 1963 May;85:967–975. doi: 10.1128/jb.85.5.967-975.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. KRISTOFFERSEN T., NELSON F. E. Degradation of amino acids by Lactobacillus casei and some factors influencing deamination of serine. Appl Microbiol. 1955 Sep;3(5):268–273. doi: 10.1128/am.3.5.268-273.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. LANGSTON C. W., BOUMA C. A study of the microorganisms from grass silage. I. The cocci. Appl Microbiol. 1960 Jul;8:212–222. doi: 10.1128/am.8.4.212-222.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. LANGSTON C. W., GUTIERREZ J., BOUMA C. Catalase-producing strains of streptococci. J Bacteriol. 1960 Nov;80:693–695. doi: 10.1128/jb.80.5.693-695.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. LANGSTON C. W., GUTIERREZ J., BOUMA C. Motile enterococci (Streptococcus faecium var. mobilis var. n.) isolated from grass silage. J Bacteriol. 1960 Nov;80:714–718. doi: 10.1128/jb.80.5.714-718.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. LANGSTON C. W., WILLIAMS P. P. Reduction of nitrate by Streptococci. J Bacteriol. 1962 Sep;84:603–603. doi: 10.1128/jb.84.3.603-603.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. LESTROVAIA N. N., MARDASHEV S. R. [Effect of certain phenylalanine haloid derivatives on decarboxylases in Streptococcus faecalis]. Biokhimiia. 1960 Mar-Apr;25:227–232. [PubMed] [Google Scholar]
  75. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  76. LYTLE V. L., ZULICK S. M., O'KANE D. J. Replacement of the pyruvate oxidation factor by carbon dioxide. J Biol Chem. 1951 Apr;189(2):551–555. [PubMed] [Google Scholar]
  77. London J., Appleman M. D. OXIDATIVE AND GLYCEROL METABOLISM OF TWO SPECIES OF ENTEROCOCCI. J Bacteriol. 1962 Sep;84(3):597–598. doi: 10.1128/jb.84.3.597-598.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. MANNWEILER E. Beiträge zur Diagnostik der Enterococcen (D-Streptococcen). Z Tropenmed Parasitol. 1955 Apr;6(1):63–72. [PubMed] [Google Scholar]
  79. MARTIN W. R., NIVEN C. F., Jr Mode of carbon dioxide fixation by the minute streptococci. J Bacteriol. 1960 Feb;79:295–298. doi: 10.1128/jb.79.2.295-298.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. MCCOY T. A., WENDER S. H. Some factors affecting the nutritional requirements of Streptococcus faecalis. J Bacteriol. 1953 Jun;65(6):660–665. doi: 10.1128/jb.65.6.660-665.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. MEDREK T. F., BARNES E. M. The influence of the growth medium on the demonstration of a group D antigen in faecal streptococci. J Gen Microbiol. 1962 Sep;28:701–709. doi: 10.1099/00221287-28-4-701. [DOI] [PubMed] [Google Scholar]
  82. MUNDT J. O., COGGIN J. H., Jr, JOHNSON L. F. Growth of Streptococcus faecalis var. liquefaciens on plants. Appl Microbiol. 1962 Nov;10:552–555. doi: 10.1128/am.10.6.552-555.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. MUNDT J. O. Occurrence of enterococci in animals in a wild environment. Appl Microbiol. 1963 Mar;11:136–140. doi: 10.1128/am.11.2.136-140.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. McGILVERY R. W., COHEN P. P. The decarboxylation of L-phenylalanine by Streptococcus faecalis R. J Biol Chem. 1948 Jul;174(3):813–816. [PubMed] [Google Scholar]
  85. Medrek T. F., Litsky W. Comparative Incidence of Coliform Bacteria and Enterococci in Undisturbed Soil. Appl Microbiol. 1960 Jan;8(1):60–63. doi: 10.1128/am.8.1.60-63.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. MØLLER V. Simplified tests for some amino acid decarboxylases and for the arginine dihydrolase system. Acta Pathol Microbiol Scand. 1955;36(2):158–172. doi: 10.1111/j.1699-0463.1955.tb04583.x. [DOI] [PubMed] [Google Scholar]
  87. Niven C. F., Sherman J. M. Nutrition of the Enterococci. J Bacteriol. 1944 Apr;47(4):335–342. doi: 10.1128/jb.47.4.335-342.1944. [DOI] [PMC free article] [PubMed] [Google Scholar]
  88. Niven C. F., Smiley K. L., Sherman J. M. The Hydrolysis of Arginine by Streptococci. J Bacteriol. 1942 Jun;43(6):651–660. doi: 10.1128/jb.43.6.651-660.1942. [DOI] [PMC free article] [PubMed] [Google Scholar]
  89. O'KANE D. J. Influence of the pyruvate oxidation factor on the oxidative metabolism of glucose by Streptococcus faecalis. J Bacteriol. 1950 Oct;60(4):449–458. doi: 10.1128/jb.60.4.449-458.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. OXFORD A. E. The nutritional requirements of rumen strains of Streptococcus bovis considered in relation to dextran synthesis from sucrose. J Gen Microbiol. 1958 Dec;19(3):617–623. doi: 10.1099/00221287-19-3-617. [DOI] [PubMed] [Google Scholar]
  91. Ostrolenk M., Hunter A. C. The Distribution of Enteric Streptococci. J Bacteriol. 1946 Jun;51(6):735–741. doi: 10.1128/jb.51.6.735-741.1946. [DOI] [PMC free article] [PubMed] [Google Scholar]
  92. PERKINS H. R. Chemical structure and biosynthesis of bacterial cell walls. Bacteriol Rev. 1963 Mar;27:18–55. doi: 10.1128/br.27.1.18-55.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  93. PERRY K. D., BRIGGS C. A. A common type antigen in Streptococci of groups D and E. J Pathol Bacteriol. 1955 Oct;70(2):546–546. doi: 10.1002/path.1700700234. [DOI] [PubMed] [Google Scholar]
  94. PERRY K. D., NEWLAND L. G., BRIGGS C. A. Group-D rumen streptococci with type antigens of group N. J Pathol Bacteriol. 1958 Oct;76(2):589–590. doi: 10.1002/path.1700760227. [DOI] [PubMed] [Google Scholar]
  95. PETERSEN C. S., CARROLL R. W. Biological effect of hydroxylysine. Science. 1956 Mar 30;123(3196):546–547. doi: 10.1126/science.123.3196.546. [DOI] [PubMed] [Google Scholar]
  96. PIERCE W. A., Jr Glucose and galactose metabolism in Streptococcus pyogenes. J Bacteriol. 1957 Aug;74(2):186–193. doi: 10.1128/jb.74.2.186-193.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  97. PLATT T. B., FOSTER E. M. Products of glucose metabolism by homofermentative streptococci under anaerobic conditions. J Bacteriol. 1958 Apr;75(4):453–459. doi: 10.1128/jb.75.4.453-459.1958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  98. PRESCOTT J. M., RAGLAND R. S., STUTTS A. L. Effects of carbon dioxide on the growth of Streptococcus bovis in the presence of various amino acids. J Bacteriol. 1957 Jan;73(1):133–138. doi: 10.1002/path.1700730116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  99. PRESCOTT J. M., STUTTS A. L. Effects of carbon dioxide on the growth and amino acid metabolism of Streptococcus bovis. J Bacteriol. 1955 Sep;70(3):285–288. doi: 10.1128/jb.70.3.285-288.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  100. PRESCOTT J. M., WILLIAMS W. T., RAGLAND R. S. Influence of nitrogen source on growth of Streptococcus bovis. Proc Soc Exp Biol Med. 1959 Nov;102:490–493. doi: 10.3181/00379727-102-25292. [DOI] [PubMed] [Google Scholar]
  101. ROGERS C. G., SARLES W. B. CHARACTERIZATION OF ENTEROCOCCUS BACTERIOPHAGES FROM THE SMALL INTESTINE OF THE RAT. J Bacteriol. 1963 Jun;85:1378–1385. doi: 10.1128/jb.85.6.1378-1385.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  102. ROGOSA M. Experimental conditions for nitrate reduction by certain strains of the genus Lactobacillus. J Gen Microbiol. 1961 Mar;24:401–408. doi: 10.1099/00221287-24-3-401. [DOI] [PubMed] [Google Scholar]
  103. SALTON M. R. Studies of the bacterial cell wall. IV. The composition of the cell walls of some Gram-positive and Gram-negative bacteria. Biochim Biophys Acta. 1953 Apr;10(4):512–523. doi: 10.1016/0006-3002(53)90296-0. [DOI] [PubMed] [Google Scholar]
  104. SALTON M. R. The lysis of micro-organisms by lysozyme and related enzymes. J Gen Microbiol. 1958 Apr;18(2):481–490. doi: 10.1099/00221287-18-2-481. [DOI] [PubMed] [Google Scholar]
  105. SANADI D. R., FLUHARTY A. L. ON THE MECHANISM OF OXIDATIVE PHOSPHORYLATION. VII. THE ENERGY-REQUIRING REDUCTION OF PYRIDINE NUCLEOTIDE BY SUCCINATE AND THE ENERGY-YIELDING OXIDATION OF REDUCED PYRIDINE NUCLEOTIDE BY FUMARATE. Biochemistry. 1963 May-Jun;2:523–528. doi: 10.1021/bi00903a023. [DOI] [PubMed] [Google Scholar]
  106. SEELEY H. W., VANDEMARK P. J. An adaptive peroxidation by Streptococcus faecalis. J Bacteriol. 1951 Jan;61(1):27–35. doi: 10.1128/jb.61.1.27-35.1951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  107. SHARPE M. E. Group D streptococci in the faeces of healthy infants and of infants with neonatal diarrhoea. J Hyg (Lond) 1952 Jun;50(2):209–228. doi: 10.1017/s0022172400019550. [DOI] [PMC free article] [PubMed] [Google Scholar]
  108. SHARPE M. E. Occurrence of a common type antigen in streptococci of groups D and N. J Gen Microbiol. 1952 Aug;7(1-2):192–199. doi: 10.1099/00221287-7-1-2-192. [DOI] [PubMed] [Google Scholar]
  109. SHATTOCK P. M. F. The identification and classification of Streptococcus faecalis and some associated streptococci. Ann Inst Pasteur Lille. 1955;7:95–100. [PubMed] [Google Scholar]
  110. SHATTOCK P. M. F. The streptococci of group D; the serological grouping of Streptococcus bovis and observations on serologically refractory group D strains. J Gen Microbiol. 1949 Jan;3(1):80–92. doi: 10.1099/00221287-3-1-80. [DOI] [PubMed] [Google Scholar]
  111. SHOCKMAN G. D., KOLB J. J., BAKAY B., CONOVER M. J., TOENNIES G. Protoplast membrane of Streptococcus faecalis. J Bacteriol. 1963 Jan;85:168–176. doi: 10.1128/jb.85.1.168-176.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  112. SHOCKMAN G. D., TOENNIES G. Formation of d-methionine from 1-by Streptococcus faecalis. Arch Biochem Biophys. 1954 May;50(1):9–17. doi: 10.1016/0003-9861(54)90003-x. [DOI] [PubMed] [Google Scholar]
  113. SHOCKMAN G. D., TOENNIES G. Growth response of Streptococcus faecalis to the stereoisomers of methionine and some derivatives. Arch Biochem Biophys. 1954 May;50(1):1–8. doi: 10.1016/0003-9861(54)90002-8. [DOI] [PubMed] [Google Scholar]
  114. SHOCKMAN G. D. The acetate requirement of Streptococcus faecalis. J Bacteriol. 1956 Jul;72(1):101–104. doi: 10.1128/jb.72.1.101-104.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  115. SLADE H. D., SLAMP W. C. Cell-wall composition and the grouping antigens of Streptococci. J Bacteriol. 1962 Aug;84:345–351. doi: 10.1128/jb.84.2.345-351.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  116. SMITH D. G., SHATTOCK P. M. The serological grouping of Streptococcus equinus. J Gen Microbiol. 1962 Dec;29:731–736. doi: 10.1099/00221287-29-4-731. [DOI] [PubMed] [Google Scholar]
  117. SMITHIES W. R., GIBBONS N. E. The deoxyribose nucleic acid slime layer of some halophilic bacteria. Can J Microbiol. 1955 Oct;1(8):614–621. doi: 10.1139/m55-074. [DOI] [PubMed] [Google Scholar]
  118. SMITH W. G., NEWMAN M., LEACH F. R., HENDERSON L. M. The effect of hydroxylysine on cell wall synthesis and cell stability in Streptococcus faecalis. J Biol Chem. 1962 Apr;237:1198–1202. [PubMed] [Google Scholar]
  119. SOKATCH J. T., GUNSALUS I. C. Aldonic acid metabolism. I. Pathway of carbon in an inducible gluconate fermentation by Streptococcus faecalis. J Bacteriol. 1957 Apr;73(4):452–460. doi: 10.1128/jb.73.4.452-460.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  120. STEELE R. H., WHITE A. G., PIERCE W. A., Jr The fermentation of galactose by Streptococcus pyogenes. J Bacteriol. 1954 Jan;67(1):86–89. doi: 10.1128/jb.67.1.86-89.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  121. Sherman J. M., Mauer J. C., Stark P. Streptococcus fecalis. J Bacteriol. 1937 Mar;33(3):275–282. doi: 10.1128/jb.33.3.275-282.1937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  122. Sherman J. M. THE STREPTOCOCCI. Bacteriol Rev. 1937 Dec;1(1):3–97. doi: 10.1128/br.1.1.3-97.1937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  123. Sherman J. M. The Enterococci and Related Streptococci. J Bacteriol. 1938 Feb;35(2):81–93. doi: 10.1128/jb.35.2.81-93.1938. [DOI] [PMC free article] [PubMed] [Google Scholar]
  124. Shockman G. D., Conover M. J., Kolb J. J., Phillips P. M., Riley L. S., Toennies G. LYSIS OF STREPTOCOCCUS FAECALIS. J Bacteriol. 1961 Jan;81(1):36–43. doi: 10.1128/jb.81.1.36-43.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  125. Shockman G. D., Conover M. J., Kolb J. J., Riley L. S., Toennies G. NUTRITIONAL REQUIREMENTS FOR BACTERIAL CELL WALL SYNTHESIS. J Bacteriol. 1961 Jan;81(1):44–50. doi: 10.1128/jb.81.1.44-50.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  126. Smith F. R., Niven C. F., Sherman J. M. THE SEROLOGICAL IDENTIFICATION OF STREPTOCOCCUS ZYMOGENES WITH THE LANCEFIELD GROUP D. J Bacteriol. 1938 Apr;35(4):425–428. doi: 10.1128/jb.35.4.425-428.1938. [DOI] [PMC free article] [PubMed] [Google Scholar]
  127. TSUNG C. M., SMITH W. G., LEACH F. R., HENDERSON L. M. Hydroxylysine metabolism in Streptococcus faecalis. J Biol Chem. 1962 Apr;237:1194–1197. [PubMed] [Google Scholar]
  128. VALENTINE R. C., WOLFE R. S. Phosphorolysis of carbamyl oxamic acid. Biochim Biophys Acta. 1960 Dec 4;45:389–391. doi: 10.1016/0006-3002(60)91467-0. [DOI] [PubMed] [Google Scholar]
  129. VOLCANI B. E., SNELL E. E. The effects of canavanine, arginine, and related compounds on the growth of bacteria. J Biol Chem. 1948 Jul;174(3):893–902. [PubMed] [Google Scholar]
  130. VOLKIN E., COHN W. E. Estimation of nucleic acids. Methods Biochem Anal. 1954;1:287–305. doi: 10.1002/9780470110171.ch11. [DOI] [PubMed] [Google Scholar]
  131. WHITE A. G., STEELE R. H., PIERCE W. A., Jr The effect of pH on the fermentation of glucose and galactose by Streptococcus pyogenes. J Bacteriol. 1955 Jul;70(1):82–86. doi: 10.1128/jb.70.1.82-86.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  132. WICKEN A. J., BADDILEY J. Structure of intracellular teichoic acids from group D streptococci. Biochem J. 1963 Apr;87:54–62. doi: 10.1042/bj0870054. [DOI] [PMC free article] [PubMed] [Google Scholar]
  133. WICKEN A. J., ELLIOTT S. D., BADDILEY J. The identity of streptococcal group D antigen with teichoic acid. J Gen Microbiol. 1963 May;31:231–239. doi: 10.1099/00221287-31-2-231. [DOI] [PubMed] [Google Scholar]
  134. WOLIN M. J., MANNING G. B., NELSON W. O. Ammonium salts as a sole source of nitrogen for the growth of Streptococcus bovis. J Bacteriol. 1959 Jul;78(1):147–147. doi: 10.1128/jb.78.1.147-147.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  135. WOOD M. The clotting of rabbit plasma by group D Streptococci. J Gen Microbiol. 1959 Oct;21:385–388. doi: 10.1099/00221287-21-2-385. [DOI] [PubMed] [Google Scholar]
  136. WRIGHT D. E. The metabolism of carbon dioxide by Streptococcus bovis. J Gen Microbiol. 1960 Jun;22:713–725. doi: 10.1099/00221287-22-3-713. [DOI] [PubMed] [Google Scholar]
  137. Wheeler S. M., Foley G. E. A Note on Non-Group-A Streptococci Associated with Human Infection. J Bacteriol. 1943 Oct;46(4):391–392. doi: 10.1128/jb.46.4.391-392.1943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  138. vanDEMARK P. J. The vitamin requirements for glycerol oxidation by Streptococcus faecalis. J Bacteriol. 1950 Apr;59(4):533–539. doi: 10.1128/jb.59.4.533-539.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Bacteriological Reviews are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES