Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1987 Dec;80(6):1755–1762. doi: 10.1172/JCI113268

Alpha 2 adrenergic agonists stimulate Na+-H+ antiport activity in the rabbit renal proximal tubule.

E P Nord 1, M J Howard 1, A Hafezi 1, P Moradeshagi 1, S Vaystub 1, P A Insel 1
PMCID: PMC442450  PMID: 2890661

Abstract

The role of adrenergic agents in augmenting proximal tubular salt and water flux, was studied in a preparation of freshly isolated rabbit renal proximal tubular cells in suspension. Norepinephrine (NE, 10(-5) M) increased sodium influx (JNa) 60 +/- 5% above control value. The alpha adrenergic antagonist, phentolamine (10(-5) M), inhibited the NE-induced enhanced JNa by 90 +/- 2%, while the beta adrenergic antagonist, propranolol, had a minimal inhibitory effect (10 +/- 2%). The alpha adrenergic subtype was further defined. Yohimbine (10(-5) M), an alpha2 adrenergic antagonist but not prazosin (10(-5) M), an alpha1 adrenergic antagonist completely blocked the NE induced increase in JNa. Clonidine, a partial alpha2 adrenergic agonist, increased JNa by 58 +/- 2% comparable to that observed with NE (10(-5) M). Yohimbine, but not prazosin, inhibited the clonidine-induced increase in JNa, confirming that alpha2 adrenergic receptors were involved. Additional alpha2 adrenergic agents, notably p-amino clonidine and alpha-methyl-norepinephrine, imparted a similar increase in JNa. The clonidine-induced increase in JNa could be completely blocked by the amiloride analogue, ethylisopropyl amiloride (EIPA, 10(-5) M). The transport pathway blocked by EIPA was partially inhibited by Li and cis H+, but stimulated by trans H+, consistent with Na+-H+ antiport. Radioligand binding studies using [3H]prazosin (alpha1 adrenergic antagonist) and [3H]rauwolscine (alpha2 adrenergic antagonist) were performed to complement the flux studies. Binding of [3H]prazosin to the cells was negligible. In contrast, [3H]rauwolscine showed saturable binding to a single class of sites, with Bmax 1678 +/- 143 binding sites/cell and KD 5.4 +/- 1.4 nM. In summary, in the isolated rabbit renal proximal tubular cell preparation, alpha2 adrenergic receptors are the predominant expression of alpha adreno-receptors, and in the absence of organic Na+-cotransported solutes, alpha2 adrenergic agonists enhance 22Na influx into the cell by stimulating the brush border membrane Na+-H+ exchange pathway.

Full text

PDF
1760

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bello-Reuss E. Effect of catecholamines on fluid reabsorption by the isolated proximal convoluted tubule. Am J Physiol. 1980 May;238(5):F347–F352. doi: 10.1152/ajprenal.1980.238.5.F347. [DOI] [PubMed] [Google Scholar]
  2. Besarab A., Silva P., Landsberg L., Epstein F. H. Effect of catecholamines on tubular function in the isolated perfused rat kidney. Am J Physiol. 1977 Jul;233(1):F39–F45. doi: 10.1152/ajprenal.1977.233.1.F39. [DOI] [PubMed] [Google Scholar]
  3. Chan Y. L. Adrenergic control of bicarbonate absorption in the proximal convoluted tubule of the rat kidney. Pflugers Arch. 1980 Nov;388(2):159–164. doi: 10.1007/BF00584122. [DOI] [PubMed] [Google Scholar]
  4. Chantrelle B., Cogan M. G., Rector F. C., Jr Evidence for coupled sodium/hydrogen exchange in the rat superficial proximal convoluted tubule. Pflugers Arch. 1982 Nov 11;395(3):186–189. doi: 10.1007/BF00584807. [DOI] [PubMed] [Google Scholar]
  5. Gill J. R., Jr, Casper A. G. Effect of renal alpha-adrenergic stimulation on proximal tubular sodium reabsorption. Am J Physiol. 1972 Nov;223(5):1201–1205. doi: 10.1152/ajplegacy.1972.223.5.1201. [DOI] [PubMed] [Google Scholar]
  6. Güllner H. G. Regulation of sodium and water excretion by catecholamines. Life Sci. 1983 Feb 28;32(9):921–925. doi: 10.1016/0024-3205(83)90920-7. [DOI] [PubMed] [Google Scholar]
  7. Hesse I. F., Johns E. J. The role of alpha-adrenoceptors in the regulation of renal tubular sodium reabsorption and renin secretion in the rabbit. Br J Pharmacol. 1985 Mar;84(3):715–724. doi: 10.1111/j.1476-5381.1985.tb16154.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Insel P. A., Snavely M. D., Healy D. P., Münzel P. A., Potenza C. L., Nord E. P. Radioligand binding and functional assays demonstrate postsynaptic alpha 2-receptors on proximal tubules of rat and rabbit kidney. J Cardiovasc Pharmacol. 1985;7 (Suppl 8):S9–17. [PubMed] [Google Scholar]
  9. Jentsch T. J., Janicke I., Sorgenfrei D., Keller S. K., Wiederholt M. The regulation of intracellular pH in monkey kidney epithelial cells (BSC-1). Roles of Na+/H+ antiport, Na+-HCO3(-)-(NaCO3-) symport, and Cl-/HCO3- exchange. J Biol Chem. 1986 Sep 15;261(26):12120–12127. [PubMed] [Google Scholar]
  10. Kahn A. M., Dolson G. M., Hise M. K., Bennett S. C., Weinman E. J. Parathyroid hormone and dibutyryl cAMP inhibit Na+/H+ exchange in renal brush border vesicles. Am J Physiol. 1985 Feb;248(2 Pt 2):F212–F218. doi: 10.1152/ajprenal.1985.248.2.F212. [DOI] [PubMed] [Google Scholar]
  11. Kinsella J. L., Aronson P. S. Properties of the Na+-H+ exchanger in renal microvillus membrane vesicles. Am J Physiol. 1980 Jun;238(6):F461–F469. doi: 10.1152/ajprenal.1980.238.6.F461. [DOI] [PubMed] [Google Scholar]
  12. Kusano E., Nakamura R., Asano Y., Imai M. Distribution of alpha-adrenergic receptors in the rabbit nephron. Tohoku J Exp Med. 1984 Mar;142(3):275–282. doi: 10.1620/tjem.142.275. [DOI] [PubMed] [Google Scholar]
  13. McPherson G. A., Summers R. J. [3H]prazosin and [3H]clonidine binding to alpha-adrenoceptors in membranes prepared from regions of rat kidney. J Pharm Pharmacol. 1981 Mar;33(3):189–191. doi: 10.1111/j.2042-7158.1981.tb13752.x. [DOI] [PubMed] [Google Scholar]
  14. Motulsky H. J., Insel P. A. [3H]Dihydroergocryptine binding to alpha-adrenergic receptors of human platelets. A reassessment using the selective radioligands [3H]prazosin, [3H]yohimbine, and [3H]rauwolscine. Biochem Pharmacol. 1982 Aug 15;31(16):2591–2597. doi: 10.1016/0006-2952(82)90705-5. [DOI] [PubMed] [Google Scholar]
  15. Neylon C. B., Summers R. J. [3H]-rauwolscine binding to alpha 2-adrenoceptors in the mammalian kidney: apparent receptor heterogeneity between species. Br J Pharmacol. 1985 Jun;85(2):349–359. doi: 10.1111/j.1476-5381.1985.tb08868.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nord E. P., Goldfarb D., Mikhail N., Moradeshagi P., Hafezi A., Vaystub S., Cragoe E. J., Jr, Fine L. G. Characteristics of the Na+-H+ antiporter in the intact renal proximal tubular cell. Am J Physiol. 1986 Mar;250(3 Pt 2):F539–F550. doi: 10.1152/ajprenal.1986.250.3.F539. [DOI] [PubMed] [Google Scholar]
  17. Nord E. P., Hafezi A., Wright E. M., Fine L. G. Mechanisms of Na+ uptake into renal brush border membrane vesicles. Am J Physiol. 1984 Oct;247(4 Pt 2):F548–F554. doi: 10.1152/ajprenal.1984.247.4.F548. [DOI] [PubMed] [Google Scholar]
  18. Smyth D. D., Umemura S., Pettinger W. A. Alpha 2-adrenoceptors and sodium reabsorption in the isolated perfused rat kidney. Am J Physiol. 1984 Oct;247(4 Pt 2):F680–F685. doi: 10.1152/ajprenal.1984.247.4.F680. [DOI] [PubMed] [Google Scholar]
  19. Snavely M. D., Insel P. A. Characterization of alpha-adrenergic receptor subtypes in the rat renal cortex. Differential regulation of alpha 1- and alpha 2-adrenergic receptors by guanyl nucleotides and Na. Mol Pharmacol. 1982 Nov;22(3):532–546. [PubMed] [Google Scholar]
  20. Stephenson J. A., Summers R. J. Light microscopic autoradiography of the distribution of [3H]rauwolscine binding to alpha 2-adrenoceptors in rat kidney. Eur J Pharmacol. 1985 Oct 22;116(3):271–278. doi: 10.1016/0014-2999(85)90162-1. [DOI] [PubMed] [Google Scholar]
  21. Stoner L. C., Burg M. B., Orloff J. Ion transport in cortical collecting tubule; effect of amiloride. Am J Physiol. 1974 Aug;227(2):453–459. doi: 10.1152/ajplegacy.1974.227.2.453. [DOI] [PubMed] [Google Scholar]
  22. Weinman E. J., Sansom S. C., Knight T. F., Senekjian H. O. Alpha and beta adrenergic agonists stimulate water absorption in the rat proximal tubule. J Membr Biol. 1982;69(2):107–111. doi: 10.1007/BF01872270. [DOI] [PubMed] [Google Scholar]
  23. Young W. S., 3rd, Kuhar M. J. alpha 2-Adrenergic receptors are associated with renal proximal tubules. Eur J Pharmacol. 1980 Oct 31;67(4):493–495. doi: 10.1016/0014-2999(80)90194-6. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES