Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1988 Jan;81(1):245–254. doi: 10.1172/JCI113302

Functional response of healthy and diseased glomeruli to a large, protein-rich meal.

A Y Chan 1, M L Cheng 1, L C Keil 1, B D Myers 1
PMCID: PMC442500  PMID: 3275694

Abstract

Differential solute clearances and hormone assays were used to characterize the effect of a large, protein-rich meal (1.5 g/kg) on glomerular function in 12 healthy volunteers (group I) and 12 patients with chronic glomerular disease (group II). Changes from baseline during 3 h after the meal included an elevation of plasma osmolality, progressive urinary concentration, and increasingly positive fluid balance. Plasma renin activity and arginine vasopressin levels (measured in group II only) increased significantly. Nevertheless, the rate of peak postmeal renal plasma flow became elevated by 13 and 33% in groups I and II, respectively. Corresponding peak increases in postmeal glomerular filtration rate exceeded baseline by 10 and 16%. In the proteinuric subjects of group II the fractional clearances of albumin, IgG and uncharged dextrans in the radius interval 36-54 A, declined significantly after the meal. A similar depression of the fractional dextran-clearance profile was observed also in group I. Applying the fractional clearances of relatively permeant dextrans (radii less than or equal to 44 A) to a model of hindered solute transport through an isoporous membrane, we estimate that transmembrane hydraulic pressure difference increased by 12% in group I and by between 0 to 12% in group II after protein ingestion. We conclude (i) that oral protein ingestion increases glomerular ultrafiltration pressure and rate in both normal and diseased glomeruli, (ii) that this hemodynamic response may be mediated in part by the glomerulopressor hormones angiotensin II and arginine vasopressin, and (iii) that the foregoing hemodynamic changes exert no acute adverse effect on glomerular barrier size-selectivity.

Full text

PDF
247

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alvestrand A., Bergström J. Glomerular hyperfiltration after protein ingestion, during glucagon infusion, and in insulin-dependent diabetes is induced by a liver hormone: deficient production of this hormone in hepatic failure causes hepatorenal syndrome. Lancet. 1984 Jan 28;1(8370):195–197. doi: 10.1016/s0140-6736(84)92115-9. [DOI] [PubMed] [Google Scholar]
  2. Aurell M. Renal response in man to plasma volume expansion and angiotensin. Scand J Clin Lab Invest Suppl. 1969;112:1–59. [PubMed] [Google Scholar]
  3. Ausiello D. A., Kreisberg J. I., Roy C., Karnovsky M. J. Contraction of cultured rat glomerular cells of apparent mesangial origin after stimulation with angiotensin II and arginine vasopressin. J Clin Invest. 1980 Mar;65(3):754–760. doi: 10.1172/JCI109723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. BERGSTROM J., BUCHT H., EK J., JOSEPHSON B., SUNDELL H., WERKO L. The renal extraction of para-aminohippurate in normal persons and in patients with diseased kidneys. Scand J Clin Lab Invest. 1959;11:361–375. doi: 10.3109/00365515909060466. [DOI] [PubMed] [Google Scholar]
  5. BRADLEY S. E., BRADLEY G. P., TYSON C. J., CURRY J. J., BLAKE W. D. Renal function in renal diseases. Am J Med. 1950 Dec;9(6):766–798. doi: 10.1016/0002-9343(50)90292-0. [DOI] [PubMed] [Google Scholar]
  6. BRODWALL E. K. RENAL EXTRACTION OF PAH IN RENAL DISEASE. Scand J Clin Lab Invest. 1964;16:12–20. doi: 10.3109/00365516409060477. [DOI] [PubMed] [Google Scholar]
  7. Blantz R. C., Konnen K. S., Tucker B. J. Angiotensin II effects upon the glomerular microcirculation and ultrafiltration coefficient of the rat. J Clin Invest. 1976 Feb;57(2):419–434. doi: 10.1172/JCI108293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bosch J. P., Lauer A., Glabman S. Short-term protein loading in assessment of patients with renal disease. Am J Med. 1984 Nov;77(5):873–879. doi: 10.1016/0002-9343(84)90529-1. [DOI] [PubMed] [Google Scholar]
  9. Bosch J. P., Saccaggi A., Lauer A., Ronco C., Belledonne M., Glabman S. Renal functional reserve in humans. Effect of protein intake on glomerular filtration rate. Am J Med. 1983 Dec;75(6):943–950. doi: 10.1016/0002-9343(83)90873-2. [DOI] [PubMed] [Google Scholar]
  10. Bryer-Ash M., Ammon R. A., Luetscher J. A. Increased inactive renin in diabetes mellitus without evidence of nephropathy. J Clin Endocrinol Metab. 1983 Mar;56(3):557–561. doi: 10.1210/jcem-56-3-557. [DOI] [PubMed] [Google Scholar]
  11. Chang R. L., Deen W. M., Robertson C. R., Bennett C. M., Glassock R. J., Brenner B. M., Troy J. L., Ueki I. F., Rasmussen B. Permselectivity of of the glomerular capillary wall. Studies of experimental glomerulonephritis in the rat using neutral dextran. J Clin Invest. 1976 May;57(5):1272–1286. doi: 10.1172/JCI108395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Chang R. L., Ueki I. F., Troy J. L., Deen W. M., Robertson C. R., Brenner B. M. Permselectivity of the glomerular capillary wall to macromolecules. II. Experimental studies in rats using neutral dextran. Biophys J. 1975 Sep;15(9):887–906. doi: 10.1016/S0006-3495(75)85863-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Chang R. S., Robertson C. R., Deen W. M., Brenner B. M. Permselectivity of the glomerular capillary wall to macromolecules. I. Theoretical considerations. Biophys J. 1975 Sep;15(9):861–886. doi: 10.1016/S0006-3495(75)85862-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. DAVIES D. F., SHOCK N. W. Age changes in glomerular filtration rate, effective renal plasma flow, and tubular excretory capacity in adult males. J Clin Invest. 1950 May;29(5):496–507. doi: 10.1172/JCI102286. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Deen W. M., Bridges C. R., Brenner B. M., Myers B. D. Heteroporous model of glomerular size selectivity: application to normal and nephrotic humans. Am J Physiol. 1985 Sep;249(3 Pt 2):F374–F389. doi: 10.1152/ajprenal.1985.249.3.F374. [DOI] [PubMed] [Google Scholar]
  16. Deen W. M., Robertson C. R., Brenner B. M. A model of glomerular ultrafiltration in the rat. Am J Physiol. 1972 Nov;223(5):1178–1183. doi: 10.1152/ajplegacy.1972.223.5.1178. [DOI] [PubMed] [Google Scholar]
  17. Hostetter T. H. Human renal response to meat meal. Am J Physiol. 1986 Apr;250(4 Pt 2):F613–F618. doi: 10.1152/ajprenal.1986.250.4.F613. [DOI] [PubMed] [Google Scholar]
  18. Hostetter T. H., Meyer T. W., Rennke H. G., Brenner B. M. Chronic effects of dietary protein in the rat with intact and reduced renal mass. Kidney Int. 1986 Oct;30(4):509–517. doi: 10.1038/ki.1986.215. [DOI] [PubMed] [Google Scholar]
  19. Hostetter T. H., Rennke H. G., Brenner B. M. The case for intrarenal hypertension in the initiation and progression of diabetic and other glomerulopathies. Am J Med. 1982 Mar;72(3):375–380. doi: 10.1016/0002-9343(82)90490-9. [DOI] [PubMed] [Google Scholar]
  20. Kaysen G. A., Gambertoglio J., Jimenez I., Jones H., Hutchison F. N. Effect of dietary protein intake on albumin homeostasis in nephrotic patients. Kidney Int. 1986 Feb;29(2):572–577. doi: 10.1038/ki.1986.36. [DOI] [PubMed] [Google Scholar]
  21. Keil L. C., Severs W. B. Reduction in plasma vasopressin levels of dehydrated rats following acute stress. Endocrinology. 1977 Jan;100(1):30–38. doi: 10.1210/endo-100-1-30. [DOI] [PubMed] [Google Scholar]
  22. Meyer T. W., Ichikawa I., Zatz R., Brenner B. M. The renal hemodynamic response to amino acid infusion in the rat. Trans Assoc Am Physicians. 1983;96:76–83. [PubMed] [Google Scholar]
  23. Mitch W. E., Walser M., Steinman T. I., Hill S., Zeger S., Tungsanga K. The effect of a keto acid-amino acid supplement to a restricted diet on the progression of chronic renal failure. N Engl J Med. 1984 Sep 6;311(10):623–629. doi: 10.1056/NEJM198409063111002. [DOI] [PubMed] [Google Scholar]
  24. PULLMAN T. N., ALVING A. S., DERN R. J., LANDOWNE M. The influence of dietary protein intake on specific renal functions in normal man. J Lab Clin Med. 1954 Aug;44(2):320–332. [PubMed] [Google Scholar]
  25. Paller M. S., Hostetter T. H. Dietary protein increases plasma renin and reduces pressor reactivity to angiotensin II. Am J Physiol. 1986 Jul;251(1 Pt 2):F34–F39. doi: 10.1152/ajprenal.1986.251.1.F34. [DOI] [PubMed] [Google Scholar]
  26. Premen A. J., Hall J. E., Smith M. J., Jr Postprandial regulation of renal hemodynamics: role of pancreatic glucagon. Am J Physiol. 1985 May;248(5 Pt 2):F656–F662. doi: 10.1152/ajprenal.1985.248.5.F656. [DOI] [PubMed] [Google Scholar]
  27. Premen A. J. Importance of the liver during glucagon-mediated increases in canine renal hemodynamics. Am J Physiol. 1985 Aug;249(2 Pt 2):F319–F322. doi: 10.1152/ajprenal.1985.249.2.F319. [DOI] [PubMed] [Google Scholar]
  28. Rodríguez-Iturbe B., Herrera J., García R. Response to acute protein load in kidney donors and in apparently normal postacute glomerulonephritis patients: evidence for glomerular hyperfiltration. Lancet. 1985 Aug 31;2(8453):461–464. doi: 10.1016/s0140-6736(85)90399-x. [DOI] [PubMed] [Google Scholar]
  29. Rosman J. B., ter Wee P. M., Meijer S., Piers-Becht T. P., Sluiter W. J., Donker A. J. Prospective randomised trial of early dietary protein restriction in chronic renal failure. Lancet. 1984 Dec 8;2(8415):1291–1296. doi: 10.1016/s0140-6736(84)90818-3. [DOI] [PubMed] [Google Scholar]
  30. Shemesh O., Deen W. M., Brenner B. M., McNeely E., Myers B. D. Effect of colloid volume expansion on glomerular barrier size-selectivity in humans. Kidney Int. 1986 Apr;29(4):916–923. doi: 10.1038/ki.1986.86. [DOI] [PubMed] [Google Scholar]
  31. Shemesh O., Golbetz H., Kriss J. P., Myers B. D. Limitations of creatinine as a filtration marker in glomerulopathic patients. Kidney Int. 1985 Nov;28(5):830–838. doi: 10.1038/ki.1985.205. [DOI] [PubMed] [Google Scholar]
  32. Sraer J. D., Sraer J., Ardaillou R., Mimoune O. Evidence for renal glomerular receptors for angiotensin II. Kidney Int. 1974 Oct;6(4):241–246. doi: 10.1038/ki.1974.105. [DOI] [PubMed] [Google Scholar]
  33. Yared A., Kon V., Ichikawa I. Mechanism of preservation of glomerular perfusion and filtration during acute extracellular fluid volume depletion. Importance of intrarenal vasopressin-prostaglandin interaction for protecting kidneys from constrictor action of vasopressin. J Clin Invest. 1985 May;75(5):1477–1487. doi: 10.1172/JCI111851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Yoshioka T., Mitarai T., Kon V., Deen W. M., Rennke H. G., Ichikawa I. Role for angiotensin II in an overt functional proteinuria. Kidney Int. 1986 Oct;30(4):538–545. doi: 10.1038/ki.1986.219. [DOI] [PubMed] [Google Scholar]
  35. Zatz R., Meyer T. W., Rennke H. G., Brenner B. M. Predominance of hemodynamic rather than metabolic factors in the pathogenesis of diabetic glomerulopathy. Proc Natl Acad Sci U S A. 1985 Sep;82(17):5963–5967. doi: 10.1073/pnas.82.17.5963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. ter Wee P. M., Rosman J. B., van der Geest S., Sluiter W. J., Donker A. J. Renal hemodynamics during separate and combined infusion of amino acids and dopamine. Kidney Int. 1986 Apr;29(4):870–874. doi: 10.1038/ki.1986.79. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES