Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1988 Mar;81(3):782–790. doi: 10.1172/JCI113384

Investigation of the biological effects of anti-cell adhesive synthetic peptides that inhibit experimental metastasis of B16-F10 murine melanoma cells.

M J Humphries 1, K M Yamada 1, K Olden 1
PMCID: PMC442526  PMID: 3343338

Abstract

The experimental metastasis of B16-F10 murine melanoma cells is blocked by the anti-cell adhesive pentapeptide Gly-Arg-Gly-Asp-Ser (GRGDS) derived from the central cell-binding domain of fibronectin. In this report, we show that peptide treatment substantially extends the survival time for mice injected intravenously with B16-F10 cells (8/8 vs. 0/8 mice alive at 150 d), thereby demonstrating the potential efficacy of GRGDS treatment in protection against metastatic colonization. We have also examined the specificity of GRGDS activity by testing a series of related homologues for their effects on experimental metastasis. The overall profile of the relative inhibitory activities of these peptides closely matched their previously established capacity to disrupt adhesion in vitro. Lung retention studies with radiolabeled B16-F10 cells revealed an accelerated rate of cell loss from the lung 0-6 h after coinjection with the active peptide GRGDS. This early effect of GRGDS was consistent with its short circulatory half-life, which was found to be 8 min. Taken together, these results suggest that peptide-mediated inhibition of pulmonary colonization is due to interference with B16-F10 cell adhesion to structures in the target organ. Possible peptide interference in tumor cell-blood cell interactions was examined in order to assess (a) possible biological side-effects of peptide treatment and (b) whether such interactions might be an alternative mechanism for GRGDS-mediated inhibition of pulmonary colonization. GRGDS was found to retain full inhibitory activity when coinjected with B16-F10 cells into mice in which platelet function was impaired by acetylsalicylic acid treatment or into thrombocytopenic mice treated with antiplatelet serum (76-93% inhibition of colony formation). These data suggest that platelet involvement in the effects of the peptide is minimal. Similarly, GRGDS was also found to be a potent inhibitor of experimental metastasis in natural killer (NK) cell-deficient beige mice (86% inhibition), thereby discounting the possibility that GRGDS artifactually enhanced NK cell activity. We conclude as a result of these studies that cell-binding fibronectin peptides are specific inhibitors of experimental metastasis that prolong survival, that they appear to function by blocking the adhesion of B16-F10 cells to structures in the target organ, and that they do not appear to act through side effects on certain metastasis-related blood cell functions. In the future, derivatives of fibronectin peptides may be potentially useful prophylactic agents for interfering with the process of metastasis.

Full text

PDF
784

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akiyama S. K., Hasegawa E., Hasegawa T., Yamada K. M. The interaction of fibronectin fragments with fibroblastic cells. J Biol Chem. 1985 Oct 25;260(24):13256–13260. [PubMed] [Google Scholar]
  2. Al-Mondhiry H. Tumor interaction with hemostasis: the rationale for the use of platelet inhibitors and anticoagulants in the treatment of cancer. Am J Hematol. 1984 Feb;16(2):193–202. doi: 10.1002/ajh.2830160213. [DOI] [PubMed] [Google Scholar]
  3. Barsky S. H., Rao C. N., Williams J. E., Liotta L. A. Laminin molecular domains which alter metastasis in a murine model. J Clin Invest. 1984 Sep;74(3):843–848. doi: 10.1172/JCI111501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Beauchamp C. O., Gonias S. L., Menapace D. P., Pizzo S. V. A new procedure for the synthesis of polyethylene glycol-protein adducts; effects on function, receptor recognition, and clearance of superoxide dismutase, lactoferrin, and alpha 2-macroglobulin. Anal Biochem. 1983 May;131(1):25–33. doi: 10.1016/0003-2697(83)90131-8. [DOI] [PubMed] [Google Scholar]
  5. Djeu J. Y., Heinbaugh J. A., Vieira W. D., Holden H. T., Herberman R. B. The effect of immunopharmacological agents on mouse natural cell-mediated cytotoxicity and on its augmentation by poly I:C. Immunopharmacology. 1979 Jun;1(3):231–244. doi: 10.1016/0162-3109(79)90040-7. [DOI] [PubMed] [Google Scholar]
  6. Fidler I. J., Gersten D. M., Hart I. R. The biology of cancer invasion and metastasis. Adv Cancer Res. 1978;28:149–250. doi: 10.1016/s0065-230x(08)60648-x. [DOI] [PubMed] [Google Scholar]
  7. Fidler I. J. Inhibition of pulmonary metastasis by intravenous injection of specifically activated macrophages. Cancer Res. 1974 May;34(5):1074–1078. [PubMed] [Google Scholar]
  8. Fidler I. J. Metastasis: quantitative analysis of distribution and fate of tumor emboli labeled with 125 I-5-iodo-2'-deoxyuridine. J Natl Cancer Inst. 1970 Oct;45(4):773–782. [PubMed] [Google Scholar]
  9. Fidler I. J. Selection of successive tumour lines for metastasis. Nat New Biol. 1973 Apr 4;242(118):148–149. doi: 10.1038/newbio242148a0. [DOI] [PubMed] [Google Scholar]
  10. GASIC G., GASIC T. Removal of sialic acid from the cell coat in tumor cells and vascular endothelium, and its effects on metastasis. Proc Natl Acad Sci U S A. 1962 Jul 15;48:1172–1177. doi: 10.1073/pnas.48.7.1172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gasic G. J., Gasic T. B., Galanti N., Johnson T., Murphy S. Platelet-tumor-cell interactions in mice. The role of platelets in the spread of malignant disease. Int J Cancer. 1973 May;11(3):704–718. doi: 10.1002/ijc.2910110322. [DOI] [PubMed] [Google Scholar]
  12. Gasic G. J., Gasic T. B., Murphy S. Anti-metastatic effect of aspirin. Lancet. 1972 Oct 28;2(7783):932–933. doi: 10.1016/s0140-6736(72)92581-0. [DOI] [PubMed] [Google Scholar]
  13. Gasic G. J., Gasic T. B., Stewart C. C. Antimetastatic effects associated with platelet reduction. Proc Natl Acad Sci U S A. 1968 Sep;61(1):46–52. doi: 10.1073/pnas.61.1.46. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gasic G. J. Role of plasma, platelets, and endothelial cells in tumor metastasis. Cancer Metastasis Rev. 1984;3(2):99–114. doi: 10.1007/BF00047657. [DOI] [PubMed] [Google Scholar]
  15. Ginsberg M., Pierschbacher M. D., Ruoslahti E., Marguerie G., Plow E. Inhibition of fibronectin binding to platelets by proteolytic fragments and synthetic peptides which support fibroblast adhesion. J Biol Chem. 1985 Apr 10;260(7):3931–3936. [PubMed] [Google Scholar]
  16. Hanna N., Burton R. C. Definitive evidence that natural killer (NK) cells inhibit experimental tumor metastases in vivo. J Immunol. 1981 Nov;127(5):1754–1758. [PubMed] [Google Scholar]
  17. Hanna N., Fidler I. J. Role of natural killer cells in the destruction of circulating tumor emboli. J Natl Cancer Inst. 1980 Oct;65(4):801–809. doi: 10.1093/jnci/65.4.801. [DOI] [PubMed] [Google Scholar]
  18. Hanna N. The role of natural killer cells in the control of tumor growth and metastasis. Biochim Biophys Acta. 1985;780(3):213–226. doi: 10.1016/0304-419x(85)90004-6. [DOI] [PubMed] [Google Scholar]
  19. Haverstick D. M., Cowan J. F., Yamada K. M., Santoro S. A. Inhibition of platelet adhesion to fibronectin, fibrinogen, and von Willebrand factor substrates by a synthetic tetrapeptide derived from the cell-binding domain of fibronectin. Blood. 1985 Oct;66(4):946–952. [PubMed] [Google Scholar]
  20. Herberman R. B. Possible role of natural killer cells and other effector cells in immune surveillance against cancer. J Invest Dermatol. 1984 Jul;83(1 Suppl):137s–140s. doi: 10.1111/1523-1747.ep12282012. [DOI] [PubMed] [Google Scholar]
  21. Herberman R. R., Ortaldo J. R., Bonnard G. D. Augmentation by interferon of human natural and antibody-dependent cell-mediated cytotoxicity. Nature. 1979 Jan 18;277(5693):221–223. doi: 10.1038/277221a0. [DOI] [PubMed] [Google Scholar]
  22. Hilgard P., Heller H., Schmidt C. G. The influence of platelet aggregation inhibitors on metastasis formation in mice (3LL). Z Krebsforsch Klin Onkol Cancer Res Clin Oncol. 1976 Aug 30;86(3):243–250. doi: 10.1007/BF00286943. [DOI] [PubMed] [Google Scholar]
  23. Honn K. V., Cavanaugh P., Evens C., Taylor J. D., Sloane B. F. Tumor cell-platelet aggregation: induced by cathepsin B-like proteinase and inhibited by prostacyclin. Science. 1982 Aug 6;217(4559):540–542. doi: 10.1126/science.7046053. [DOI] [PubMed] [Google Scholar]
  24. Humphries M. J., Matsumoto K., White S. L., Olden K. Oligosaccharide modification by swainsonine treatment inhibits pulmonary colonization by B16-F10 murine melanoma cells. Proc Natl Acad Sci U S A. 1986 Mar;83(6):1752–1756. doi: 10.1073/pnas.83.6.1752. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Humphries M. J., Olden K., Yamada K. M. A synthetic peptide from fibronectin inhibits experimental metastasis of murine melanoma cells. Science. 1986 Jul 25;233(4762):467–470. doi: 10.1126/science.3726541. [DOI] [PubMed] [Google Scholar]
  26. Ivarsson L. Metastasis formation after intravenous tumour cell injection in thrombocytopenic rats. Eur Surg Res. 1976;8(1):51–60. doi: 10.1159/000127847. [DOI] [PubMed] [Google Scholar]
  27. Jenne D., Stanley K. K. Molecular cloning of S-protein, a link between complement, coagulation and cell-substrate adhesion. EMBO J. 1985 Dec 1;4(12):3153–3157. doi: 10.1002/j.1460-2075.1985.tb04058.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Jones D. S., Wallace A. C., Fraser E. E. Sequence of events in experimental metastases of Walker 256 tumor: light, immunofluorescent, and electron microscopic observations. J Natl Cancer Inst. 1971 Mar;46(3):493–504. [PubMed] [Google Scholar]
  29. Kolenich J. J., Mansour E. G., Flynn A. Haematological effects of aspirin. Lancet. 1972 Sep 30;2(7779):714–714. doi: 10.1016/s0140-6736(72)92124-1. [DOI] [PubMed] [Google Scholar]
  30. Liotta L. A., Rao C. N., Barsky S. H. Tumor invasion and the extracellular matrix. Lab Invest. 1983 Dec;49(6):636–649. [PubMed] [Google Scholar]
  31. Mantovani A., Luini W., Peri G., Vecchi A., Spreafico F. Effect of chemotherapeutic agents on natural cell-mediated cytotoxicity in mice. J Natl Cancer Inst. 1978 Nov;61(5):1255–1261. doi: 10.1093/jnci/61.5.1255. [DOI] [PubMed] [Google Scholar]
  32. McCarthy J. B., Basara M. L., Palm S. L., Sas D. F., Furcht L. T. The role of cell adhesion proteins--laminin and fibronectin--in the movement of malignant and metastatic cells. Cancer Metastasis Rev. 1985;4(2):125–152. doi: 10.1007/BF00050692. [DOI] [PubMed] [Google Scholar]
  33. McGrath B. P., Tiller D. J., Horvath J. S., Johnson J. R. Measurement of extracellular fluid volume in patients on maintenance hemodialysis. Kidney Int. 1976 Jan;9(1):57–59. doi: 10.1038/ki.1976.8. [DOI] [PubMed] [Google Scholar]
  34. Mehta P. Potential role of platelets in the pathogenesis of tumor metastasis. Blood. 1984 Jan;63(1):55–63. [PubMed] [Google Scholar]
  35. Nicolson G. L. Cancer metastasis. Organ colonization and the cell-surface properties of malignant cells. Biochim Biophys Acta. 1982 Dec 21;695(2):113–176. doi: 10.1016/0304-419x(82)90020-8. [DOI] [PubMed] [Google Scholar]
  36. Pearlstein E., Cooper L. B., Karpatkin S. Extraction and characterization of a platelet-aggregating material from SV40-transformed mouse 3T3 fibroblasts. J Lab Clin Med. 1979 Feb;93(2):332–344. [PubMed] [Google Scholar]
  37. Pearlstein E., Salk P. L., Yogeeswaran G., Karpatkin S. Correlation between spontaneous metastatic potential, platelet-aggregating activity of cell surface extracts, and cell surface sialylation in 10 metastatic-variant derivatives of a rat renal sarcoma cell line. Proc Natl Acad Sci U S A. 1980 Jul;77(7):4336–4339. doi: 10.1073/pnas.77.7.4336. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Pierschbacher M. D., Ruoslahti E. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature. 1984 May 3;309(5963):30–33. doi: 10.1038/309030a0. [DOI] [PubMed] [Google Scholar]
  39. Pierschbacher M. D., Ruoslahti E. Variants of the cell recognition site of fibronectin that retain attachment-promoting activity. Proc Natl Acad Sci U S A. 1984 Oct;81(19):5985–5988. doi: 10.1073/pnas.81.19.5985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Poste G., Fidler I. J. The pathogenesis of cancer metastasis. Nature. 1980 Jan 10;283(5743):139–146. doi: 10.1038/283139a0. [DOI] [PubMed] [Google Scholar]
  41. Rajagopalan S., Gonias S. L., Pizzo S. V. A nonantigenic covalent streptokinase-polyethylene glycol complex with plasminogen activator function. J Clin Invest. 1985 Feb;75(2):413–419. doi: 10.1172/JCI111715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Roder J. C., Lohmann-Matthes M. L., Domzig W., Wigzell H. The beige mutation in the mouse. II. Selectivity of the natural killer (NK) cell defect. J Immunol. 1979 Nov;123(5):2174–2181. [PubMed] [Google Scholar]
  43. Roder J., Duwe A. The beige mutation in the mouse selectively impairs natural killer cell function. Nature. 1979 Mar 29;278(5703):451–453. doi: 10.1038/278451a0. [DOI] [PubMed] [Google Scholar]
  44. Sadler J. E., Shelton-Inloes B. B., Sorace J. M., Harlan J. M., Titani K., Davie E. W. Cloning and characterization of two cDNAs coding for human von Willebrand factor. Proc Natl Acad Sci U S A. 1985 Oct;82(19):6394–6398. doi: 10.1073/pnas.82.19.6394. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Seaman W. E., Blackman M. A., Gindhart T. D., Roubinian J. R., Loeb J. M., Talal N. beta-Estradiol reduces natural killer cells in mice. J Immunol. 1978 Dec;121(6):2193–2198. [PubMed] [Google Scholar]
  46. Senik A., Gresser I., Maury C., Gidlund M., Orn A., Wigzell H. Enhancement by interferon of natural killer cell activity in mice. Cell Immunol. 1979 Apr;44(1):186–200. doi: 10.1016/0008-8749(79)90039-x. [DOI] [PubMed] [Google Scholar]
  47. Silnutzer J. E., Barnes D. W. Effects of fibronectin-related peptides on cell spreading. In Vitro Cell Dev Biol. 1985 Jan;21(1):73–78. doi: 10.1007/BF02620918. [DOI] [PubMed] [Google Scholar]
  48. Sindelar W. F., Tralka T. S., Ketcham A. S. Electron microscopic observations on formation of pulmonary metastases. J Surg Res. 1975 Feb;18(2):137–161. doi: 10.1016/0022-4804(75)90010-4. [DOI] [PubMed] [Google Scholar]
  49. Suzuki S., Oldberg A., Hayman E. G., Pierschbacher M. D., Ruoslahti E. Complete amino acid sequence of human vitronectin deduced from cDNA. Similarity of cell attachment sites in vitronectin and fibronectin. EMBO J. 1985 Oct;4(10):2519–2524. doi: 10.1002/j.1460-2075.1985.tb03965.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Tack B. F., Dean J., Eilat D., Lorenz P. E., Schechter A. N. Tritium labeling of proteins to high specific radioactivity by reduction methylation. J Biol Chem. 1980 Sep 25;255(18):8842–8847. [PubMed] [Google Scholar]
  51. Talmadge J. E., Meyers K. M., Prieur D. J., Starkey J. R. Role of NK cells in tumour growth and metastasis in beige mice. Nature. 1980 Apr 17;284(5757):622–624. doi: 10.1038/284622a0. [DOI] [PubMed] [Google Scholar]
  52. Terranova V. P., Williams J. E., Liotta L. A., Martin G. R. Modulation of the metastatic activity of melanoma cells by laminin and fibronectin. Science. 1984 Nov 23;226(4677):982–985. doi: 10.1126/science.6505678. [DOI] [PubMed] [Google Scholar]
  53. WALSER M., SELDIN D. W., GROLLMAN A. An evaluation of radiosulfate for the determination of the volume of extracellular fluid in man and dogs. J Clin Invest. 1953 Apr;32(4):299–311. doi: 10.1172/JCI102739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Yamada K. M., Kennedy D. W. Amino acid sequence specificities of an adhesive recognition signal. J Cell Biochem. 1985;28(2):99–104. doi: 10.1002/jcb.240280203. [DOI] [PubMed] [Google Scholar]
  55. Yamada K. M., Kennedy D. W. Dualistic nature of adhesive protein function: fibronectin and its biologically active peptide fragments can autoinhibit fibronectin function. J Cell Biol. 1984 Jul;99(1 Pt 1):29–36. doi: 10.1083/jcb.99.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Yamada K. M., Kennedy D. W. Peptide inhibitors of fibronectin, laminin, and other adhesion molecules: unique and shared features. J Cell Physiol. 1987 Jan;130(1):21–28. doi: 10.1002/jcp.1041300105. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES