Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1992 Oct;90(4):1523–1529. doi: 10.1172/JCI116020

Evidence for tissue-specific activation of renal angiotensinogen mRNA expression in chronic stable experimental heart failure.

H Schunkert 1, J R Ingelfinger 1, A T Hirsch 1, S S Tang 1, S E Litwin 1, C E Talsness 1, V J Dzau 1
PMCID: PMC443199  PMID: 1401084

Abstract

The intrarenal renin-angiotensin system (RAS) may contribute to the pathophysiology of heart failure by the generation of angiotensin II at local sites within the kidneys. Angiotensin II may directly influence renal hemodynamics, glomerular contractility, and tubular sodium reabsorption, thereby promoting sodium and fluid retention in this syndrome. In the present study, we examined components of the circulating RAS as well as the intrarenal expressions of renin and angiotensinogen mRNA in rats with stable compensated heart failure (HF) 12 wk after experimental myocardial infarction. Renal angiotensinogen mRNA level in vehicle-treated HF rats increased 47%, as compared with sham control rats (P = 0.001). The increase in angiotensinogen mRNA levels was more pronounced in animals with medium (46%, P < 0.05) and large (66%, P < 0.05) infarcts than in those with small infarcts (31%, P = NS). There were no differences in liver angiotensinogen mRNA, circulating angiotensinogen, angiotensin II, plasma renin concentration (PRC), kidney renin content (KRC), and renal renin mRNA level between sham and HFv. In addition, in a separate group of rats with heart failure, we demonstrated that renal angiotensin II concentration increased twofold (P < 0.05) as compared with that of age-matched sham operated controls. A parallel group of heart failure rats (HFe, n = 11) was treated with enalapril (25 mg/kg per d) in drinking water for 6 wk before these measurements. Blood pressure decreased significantly during treatment (91 vs. 103 mm Hg, P < 0.05). Enalapril treatment in HF rats increased renin mRNA level (2.5-fold, P < 0.005), KRC (5.6-fold, P = 0.005), and PRC (15.5-fold, P < 0.005). The increase in renal angiotensinogen mRNA level observed in HFv rats was markedly attenuated in enalapril treated HF rats (P < 0.001), suggesting a positive feedback of angiotensin II on renal angiotensinogen synthesis. These findings demonstrate an activation of intrarenal RAS, but no changes in the circulating counterpart in this model of experimental heart failure, and they support the concept that the intrinsic renal RAS may contribute to the pathophysiology in this syndrome.

Full text

PDF
1526

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Admiraal P. J., Derkx F. H., Danser A. H., Pieterman H., Schalekamp M. A. Metabolism and production of angiotensin I in different vascular beds in subjects with hypertension. Hypertension. 1990 Jan;15(1):44–55. doi: 10.1161/01.hyp.15.1.44. [DOI] [PubMed] [Google Scholar]
  2. Bailie M. D., Rector F. C., Jr, Seldin D. W. Angiotensin II in arterial and renal venous plasma and renal lymph in the dog. J Clin Invest. 1971 Jan;50(1):119–126. doi: 10.1172/JCI106465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  4. Buñag R. D. Validation in awake rats of a tail-cuff method for measuring systolic pressure. J Appl Physiol. 1973 Feb;34(2):279–282. doi: 10.1152/jappl.1973.34.2.279. [DOI] [PubMed] [Google Scholar]
  5. Campbell D. J., Habener J. F. Angiotensinogen gene is expressed and differentially regulated in multiple tissues of the rat. J Clin Invest. 1986 Jul;78(1):31–39. doi: 10.1172/JCI112566. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cannon P. J. The kidney in heart failure. N Engl J Med. 1977 Jan 6;296(1):26–32. doi: 10.1056/NEJM197701062960108. [DOI] [PubMed] [Google Scholar]
  7. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  8. Cleland J. G., Dargie H. J. Heart failure, renal function, and angiotensin converting enzyme inhibitors. Kidney Int Suppl. 1987 May;20:S220–S228. [PubMed] [Google Scholar]
  9. Deschepper C. F., Mellon S. H., Cumin F., Baxter J. D., Ganong W. F. Analysis by immunocytochemistry and in situ hybridization of renin and its mRNA in kidney, testis, adrenal, and pituitary of the rat. Proc Natl Acad Sci U S A. 1986 Oct;83(19):7552–7556. doi: 10.1073/pnas.83.19.7552. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dzau V. J., Colucci W. S., Hollenberg N. K., Williams G. H. Relation of the renin-angiotensin-aldosterone system to clinical state in congestive heart failure. Circulation. 1981 Mar;63(3):645–651. doi: 10.1161/01.cir.63.3.645. [DOI] [PubMed] [Google Scholar]
  11. Dzau V. J. Renal and circulatory mechanisms in congestive heart failure. Kidney Int. 1987 Jun;31(6):1402–1415. doi: 10.1038/ki.1987.156. [DOI] [PubMed] [Google Scholar]
  12. Ellison K. E., Ingelfinger J. R., Pivor M., Dzau V. J. Androgen regulation of rat renal angiotensinogen messenger RNA expression. J Clin Invest. 1989 Jun;83(6):1941–1945. doi: 10.1172/JCI114102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fletcher P. J., Pfeffer J. M., Pfeffer M. A., Braunwald E. Left ventricular diastolic pressure-volume relations in rats with healed myocardial infarction. Effects on systolic function. Circ Res. 1981 Sep;49(3):618–626. doi: 10.1161/01.res.49.3.618. [DOI] [PubMed] [Google Scholar]
  14. Gomez R. A., Lynch K. R., Chevalier R. L., Everett A. D., Johns D. W., Wilfong N., Peach M. J., Carey R. M. Renin and angiotensinogen gene expression and intrarenal renin distribution during ACE inhibition. Am J Physiol. 1988 Jun;254(6 Pt 2):F900–F906. doi: 10.1152/ajprenal.1988.254.6.F900. [DOI] [PubMed] [Google Scholar]
  15. Hall J. E. Control of sodium excretion by angiotensin II: intrarenal mechanisms and blood pressure regulation. Am J Physiol. 1986 Jun;250(6 Pt 2):R960–R972. doi: 10.1152/ajpregu.1986.250.6.R960. [DOI] [PubMed] [Google Scholar]
  16. Hall J. E., Guyton A. C., Jackson T. E., Coleman T. G., Lohmeier T. E., Trippodo N. C. Control of glomerular filtration rate by renin-angiotensin system. Am J Physiol. 1977 Nov;233(5):F366–F372. doi: 10.1152/ajprenal.1977.233.5.F366. [DOI] [PubMed] [Google Scholar]
  17. Herrmann H. C., Dzau V. J. The feedback regulation of angiotensinogen production by components of the renin-angiotensin system. Circ Res. 1983 Mar;52(3):328–334. doi: 10.1161/01.res.52.3.328. [DOI] [PubMed] [Google Scholar]
  18. Hodsman G. P., Kohzuki M., Howes L. G., Sumithran E., Tsunoda K., Johnston C. I. Neurohumoral responses to chronic myocardial infarction in rats. Circulation. 1988 Aug;78(2):376–381. doi: 10.1161/01.cir.78.2.376. [DOI] [PubMed] [Google Scholar]
  19. Hostetter T. H., Pfeffer J. M., Pfeffer M. A., Dworkin L. D., Braunwald E., Brenner B. M. Cardiorenal hemodynamics and sodium excretion in rats with myocardial infarction. Am J Physiol. 1983 Jul;245(1):H98–103. doi: 10.1152/ajpheart.1983.245.1.H98. [DOI] [PubMed] [Google Scholar]
  20. Ichikawa I., Pfeffer J. M., Pfeffer M. A., Hostetter T. H., Brenner B. M. Role of angiotensin II in the altered renal function of congestive heart failure. Circ Res. 1984 Nov;55(5):669–675. doi: 10.1161/01.res.55.5.669. [DOI] [PubMed] [Google Scholar]
  21. Ingelfinger J. R., Pratt R. E., Ellison K., Dzau V. J. Sodium regulation of angiotensinogen mRNA expression in rat kidney cortex and medulla. J Clin Invest. 1986 Nov;78(5):1311–1315. doi: 10.1172/JCI112716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ingelfinger J. R., Zuo W. M., Fon E. A., Ellison K. E., Dzau V. J. In situ hybridization evidence for angiotensinogen messenger RNA in the rat proximal tubule. An hypothesis for the intrarenal renin angiotensin system. J Clin Invest. 1990 Feb;85(2):417–423. doi: 10.1172/JCI114454. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Iwao H., Fukui K., Kim S., Nakayama K., Ohkubo H., Nakanishi S., Abe Y. Sodium balance effects on renin, angiotensinogen, and atrial natriuretic polypeptide mRNA levels. Am J Physiol. 1988 Aug;255(2 Pt 1):E129–E136. doi: 10.1152/ajpendo.1988.255.2.E129. [DOI] [PubMed] [Google Scholar]
  24. Klett C., Hellmann W., Suzuki F., Nakanishi S., Ohkubo H., Ganten D., Hackenthal E. Induction of angiotensinogen mRNA in hepatocytes by angiotensin II and glucocorticoids. Clin Exp Hypertens A. 1988;10(6):1009–1022. doi: 10.1080/07300077.1988.11878797. [DOI] [PubMed] [Google Scholar]
  25. Kohzuki M., Hodsman G. P., Johnston C. I. Attenuated response to atrial natriuretic peptide in rats with myocardial infarction. Am J Physiol. 1989 Feb;256(2 Pt 2):H533–H538. doi: 10.1152/ajpheart.1989.256.2.H533. [DOI] [PubMed] [Google Scholar]
  26. Kubo S. H., Clark M., Laragh J. H., Borer J. S., Cody R. J. Identification of normal neurohormonal activity in mild congestive heart failure and stimulating effect of upright posture and diuretics. Am J Cardiol. 1987 Dec 1;60(16):1322–1328. doi: 10.1016/0002-9149(87)90615-1. [DOI] [PubMed] [Google Scholar]
  27. Levens N. R., Peach M. J., Carey R. M. Role of the intrarenal renin-angiotensin system in the control of renal function. Circ Res. 1981 Feb;48(2):157–167. doi: 10.1161/01.res.48.2.157. [DOI] [PubMed] [Google Scholar]
  28. Michel J. B., Lattion A. L., Salzmann J. L., Cerol M. L., Philippe M., Camilleri J. P., Corvol P. Hormonal and cardiac effects of converting enzyme inhibition in rat myocardial infarction. Circ Res. 1988 Apr;62(4):641–650. doi: 10.1161/01.res.62.4.641. [DOI] [PubMed] [Google Scholar]
  29. Misumi J., Gardes J., Gonzalez M. F., Corvol P., Menard J. Angiotensinogen's role in ANG formation, renin release, and renal hemodynamics in isolated perfused kidney. Am J Physiol. 1989 Apr;256(4 Pt 2):F719–F727. doi: 10.1152/ajprenal.1989.256.4.F719. [DOI] [PubMed] [Google Scholar]
  30. Pfeffer M. A., Pfeffer J. M., Fishbein M. C., Fletcher P. J., Spadaro J., Kloner R. A., Braunwald E. Myocardial infarct size and ventricular function in rats. Circ Res. 1979 Apr;44(4):503–512. doi: 10.1161/01.res.44.4.503. [DOI] [PubMed] [Google Scholar]
  31. Pfeffer M. A., Pfeffer J. M., Steinberg C., Finn P. Survival after an experimental myocardial infarction: beneficial effects of long-term therapy with captopril. Circulation. 1985 Aug;72(2):406–412. doi: 10.1161/01.cir.72.2.406. [DOI] [PubMed] [Google Scholar]
  32. Raya T. E., Lee R. W., Westhoff T., Goldman S. Captopril restores hemodynamic responsiveness to atrial natriuretic peptide in rats with heart failure. Circulation. 1989 Dec;80(6):1886–1892. doi: 10.1161/01.cir.80.6.1886. [DOI] [PubMed] [Google Scholar]
  33. Schuster V. L., Kokko J. P., Jacobson H. R. Angiotensin II directly stimulates sodium transport in rabbit proximal convoluted tubules. J Clin Invest. 1984 Feb;73(2):507–515. doi: 10.1172/JCI111237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Seikaly M. G., Arant B. S., Jr, Seney F. D., Jr Endogenous angiotensin concentrations in specific intrarenal fluid compartments of the rat. J Clin Invest. 1990 Oct;86(4):1352–1357. doi: 10.1172/JCI114846. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Soubrier F., Alhenc-Gelas F., Hubert C., Allegrini J., John M., Tregear G., Corvol P. Two putative active centers in human angiotensin I-converting enzyme revealed by molecular cloning. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9386–9390. doi: 10.1073/pnas.85.24.9386. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Stanton R. C., Brenner B. M. Role of the kidney in congestive heart failure. Acta Med Scand Suppl. 1986;707:21–25. doi: 10.1111/j.0954-6820.1986.tb18110.x. [DOI] [PubMed] [Google Scholar]
  37. Taugner R., Hackenthal E., Helmchen U., Ganten D., Kugler P., Marin-Grez M., Nobiling R., Unger T., Lockwald I., Keilbach R. The intrarenal renin-angiotensin-system. An immunocytochemical study on the localization of renin, angiotensinogen, converting enzyme and the angiotensins in the kidney of mouse and rat. Klin Wochenschr. 1982 Oct 1;60(19):1218–1222. doi: 10.1007/BF01716726. [DOI] [PubMed] [Google Scholar]
  38. Watkins L., Jr, Burton J. A., Haber E., Cant J. R., Smith F. W., Barger A. C. The renin-angiotensin-aldosterone system in congestive failure in conscious dogs. J Clin Invest. 1976 Jun;57(6):1606–1617. doi: 10.1172/JCI108431. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES