Abstract
Recent studies have demonstrated the existence of a novel family of calcium-independent plasmalogen-selective phospholipases A2 in canine myocardium that have been implicated as enzymic mediators of ischemic membrane damage. We now report that human myocardium contains two functionally distinct isoforms of cytosolic calcium-independent phospholipase A2. The major cytosolic phospholipase A2 isoform preferentially hydrolyzes plasmalogen substrate, possesses a pH optimum of 7.0, and is chromatographically resolvable from a minor cytosolic calcium-independent phospholipase A2 isoform that hydrolyzes plasmenylcholine and phosphatidylcholine substrates at similar rates and possesses a pH optimum of 8.5. The major cytosolic calcium-independent phospholipase A2 isoform was identified as a 40-kD polypeptide after its 182,000-fold purification by sequential column chromatographies to a final specific activity of 67 mumol/mg.min. The purified 40-kD human myocardial phospholipase A2 preferentially hydrolyzes plasmalogens containing arachidonic acid at the sn-2 position. Both reverse-phase HPLC and fast atom bombardment mass spectroscopic analysis of human myocardial ethanolamine and choline glycerophospholipids demonstrated that plasmenylethanolamine and plasmenylcholine molecular species containing arachidonic acid at the sn-2 position are prominent constituents of human myocardium. Collectively, these results identify and characterize the major human myocardial cytosolic calcium-independent phospholipase A2 activity, demonstrate the presence of functionally distinct human myocardial cytosolic calcium-independent phospholipase A2 isoforms, and document the abundance of arachidonoylated plasmalogen molecular species in human myocardium that serve as substrates.
Full text
PDF









Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arthur G., Covic L., Wientzek M., Choy P. C. Plasmalogenase in hamster heart. Biochim Biophys Acta. 1985 Feb 8;833(2):189–195. doi: 10.1016/0005-2760(85)90189-4. [DOI] [PubMed] [Google Scholar]
- BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
- Berridge M. J., Irvine R. F. Inositol phosphates and cell signalling. Nature. 1989 Sep 21;341(6239):197–205. doi: 10.1038/341197a0. [DOI] [PubMed] [Google Scholar]
- Blank M. L., Cress E. A., Snyder F. Separation and quantitation of phospholipid subclasses as their diradylglycerobenzoate derivatives by normal-phase high-performance liquid chromatography. J Chromatogr. 1987 Apr 17;392:421–425. doi: 10.1016/s0021-9673(01)94286-4. [DOI] [PubMed] [Google Scholar]
- Cao Y. Z., Tam S. W., Arthur G., Chen H., Choy P. C. The purification and characterization of a phospholipase A in hamster heart cytosol for the hydrolysis of phosphatidylcholine. J Biol Chem. 1987 Dec 15;262(35):16927–16935. [PubMed] [Google Scholar]
- Chien K. R., Han A., Sen A., Buja L. M., Willerson J. T. Accumulation of unesterified arachidonic acid in ischemic canine myocardium. Relationship to a phosphatidylcholine deacylation-reacylation cycle and the depletion of membrane phospholipids. Circ Res. 1984 Mar;54(3):313–322. doi: 10.1161/01.res.54.3.313. [DOI] [PubMed] [Google Scholar]
- Chien K. R., Reeves J. P., Buja L. M., Bonte F., Parkey R. W., Willerson J. T. Phospholipid alterations in canine ischemic myocardium. Temporal and topographical correlations with Tc-99m-PPi accumulation and an in vitro sarcolemmal Ca2+ permeability defect. Circ Res. 1981 May;48(5):711–719. doi: 10.1161/01.res.48.5.711. [DOI] [PubMed] [Google Scholar]
- Corr P. B., Gross R. W., Sobel B. E. Amphipathic metabolites and membrane dysfunction in ischemic myocardium. Circ Res. 1984 Aug;55(2):135–154. doi: 10.1161/01.res.55.2.135. [DOI] [PubMed] [Google Scholar]
- Creer M. H., Gross R. W. Reversed-phase high-performance liquid chromatographic separation of molecular species of alkyl ether, vinyl ether, and monoacyl lysophospholipids. J Chromatogr. 1985 Feb 27;338(1):61–69. doi: 10.1016/0378-4347(85)80070-0. [DOI] [PubMed] [Google Scholar]
- Ford D. A., Gross R. W. Plasmenylethanolamine is the major storage depot for arachidonic acid in rabbit vascular smooth muscle and is rapidly hydrolyzed after angiotensin II stimulation. Proc Natl Acad Sci U S A. 1989 May;86(10):3479–3483. doi: 10.1073/pnas.86.10.3479. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ford D. A., Hazen S. L., Saffitz J. E., Gross R. W. The rapid and reversible activation of a calcium-independent plasmalogen-selective phospholipase A2 during myocardial ischemia. J Clin Invest. 1991 Jul;88(1):331–335. doi: 10.1172/JCI115296. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gross R. W. High plasmalogen and arachidonic acid content of canine myocardial sarcolemma: a fast atom bombardment mass spectroscopic and gas chromatography-mass spectroscopic characterization. Biochemistry. 1984 Jan 3;23(1):158–165. doi: 10.1021/bi00296a026. [DOI] [PubMed] [Google Scholar]
- Gross R. W. Identification of plasmalogen as the major phospholipid constituent of cardiac sarcoplasmic reticulum. Biochemistry. 1985 Mar 26;24(7):1662–1668. doi: 10.1021/bi00328a014. [DOI] [PubMed] [Google Scholar]
- Han X. L., Zupan L. A., Hazen S. L., Gross R. W. Semisynthesis and purification of homogeneous plasmenylcholine molecular species. Anal Biochem. 1992 Jan;200(1):119–124. doi: 10.1016/0003-2697(92)90286-g. [DOI] [PubMed] [Google Scholar]
- Hazen S. L., Ford D. A., Gross R. W. Activation of a membrane-associated phospholipase A2 during rabbit myocardial ischemia which is highly selective for plasmalogen substrate. J Biol Chem. 1991 Mar 25;266(9):5629–5633. [PubMed] [Google Scholar]
- Hazen S. L., Gross R. W. ATP-dependent regulation of rabbit myocardial cytosolic calcium-independent phospholipase A2. J Biol Chem. 1991 Aug 5;266(22):14526–14534. [PubMed] [Google Scholar]
- Hazen S. L., Gross R. W. Identification and characterization of human myocardial phospholipase A2 from transplant recipients suffering from end-stage ischemic heart disease. Circ Res. 1992 Mar;70(3):486–495. doi: 10.1161/01.res.70.3.486. [DOI] [PubMed] [Google Scholar]
- Hazen S. L., Loeb L. A., Gross R. W. Purification and characterization of cytosolic phospholipase A2 activities from canine myocardium and sheep platelets. Methods Enzymol. 1991;197:400–411. doi: 10.1016/0076-6879(91)97166-v. [DOI] [PubMed] [Google Scholar]
- Hazen S. L., Stuppy R. J., Gross R. W. Purification and characterization of canine myocardial cytosolic phospholipase A2. A calcium-independent phospholipase with absolute f1-2 regiospecificity for diradyl glycerophospholipids. J Biol Chem. 1990 Jun 25;265(18):10622–10630. [PubMed] [Google Scholar]
- Hazen S. L., Zupan L. A., Weiss R. H., Getman D. P., Gross R. W. Suicide inhibition of canine myocardial cytosolic calcium-independent phospholipase A2. Mechanism-based discrimination between calcium-dependent and -independent phospholipases A2. J Biol Chem. 1991 Apr 15;266(11):7227–7232. [PubMed] [Google Scholar]
- Katz A. M., Messineo F. C. Lipid-membrane interactions and the pathogenesis of ischemic damage in the myocardium. Circ Res. 1981 Jan;48(1):1–16. doi: 10.1161/01.res.48.1.1. [DOI] [PubMed] [Google Scholar]
- Miyazaki Y., Gross R. W., Sobel B. E., Saffitz J. E. Biochemical and subcellular distribution of arachidonic acid in rat myocardium. Am J Physiol. 1987 Dec;253(6 Pt 1):C846–C853. doi: 10.1152/ajpcell.1987.253.6.C846. [DOI] [PubMed] [Google Scholar]
- Miyazaki Y., Gross R. W., Sobel B. E., Saffitz J. E. Selective turnover of sarcolemmal phospholipids with lethal cardiac myocyte injury. Am J Physiol. 1990 Aug;259(2 Pt 1):C325–C331. doi: 10.1152/ajpcell.1990.259.2.C325. [DOI] [PubMed] [Google Scholar]
- Nakagawa Y., Waku K., Ishima Y. Changes in the composition of fatty chains of diacyl, alkylacyl and alkenylacyl ethanolamine and choline phosphoglycerides during the development of chick heart ventricular cells. High accumulation of 22-carbon fatty acid in ether phospholipids. Biochim Biophys Acta. 1982 Sep 14;712(3):667–676. [PubMed] [Google Scholar]
- Nalbone G., Hostetler K. Y. Subcellular localization of the phospholipases A of rat heart: evidence for a cytosolic phospholipase A1. J Lipid Res. 1985 Jan;26(1):104–114. [PubMed] [Google Scholar]
- Needleman P., Turk J., Jakschik B. A., Morrison A. R., Lefkowith J. B. Arachidonic acid metabolism. Annu Rev Biochem. 1986;55:69–102. doi: 10.1146/annurev.bi.55.070186.000441. [DOI] [PubMed] [Google Scholar]
- Osanai A., Sakagami T. Compositions of diacyl-, alkenyl-acyl-, and alkyl-acyl-glycerylphosphorylcholine and -ethanolamine in male and female rabbit hearts. J Biochem. 1979 Jun;85(6):1453–1459. doi: 10.1093/oxfordjournals.jbchem.a132473. [DOI] [PubMed] [Google Scholar]
- Rabinowitz J. L., Hercker E. S. Total plasmalogens and O-(acylalkylglycerophosphoryl) ethanolamine from labelled hexadecanol and palmitate during hypoxia and anoxia in rat heart. Biochem J. 1976 Dec 15;160(3):463–466. doi: 10.1042/bj1600463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Samuelsson B., Goldyne M., Granström E., Hamberg M., Hammarström S., Malmsten C. Prostaglandins and thromboxanes. Annu Rev Biochem. 1978;47:997–1029. doi: 10.1146/annurev.bi.47.070178.005025. [DOI] [PubMed] [Google Scholar]
- Tam S. W., Man R. Y., Choy P. C. The hydrolysis of phosphatidylcholine by phospholipase A2 in hamster heart. Can J Biochem Cell Biol. 1984 Dec;62(12):1269–1274. doi: 10.1139/o84-161. [DOI] [PubMed] [Google Scholar]
- Wolf R. A., Gross R. W. Identification of neutral active phospholipase C which hydrolyzes choline glycerophospholipids and plasmalogen selective phospholipase A2 in canine myocardium. J Biol Chem. 1985 Jun 25;260(12):7295–7303. [PubMed] [Google Scholar]
- Wykle R. L., Malone B., Snyder F. Enzymatic synthesis of 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine, a hypotensive and platelet-aggregating lipid. J Biol Chem. 1980 Nov 10;255(21):10256–10260. [PubMed] [Google Scholar]
- van Bilsen M., van der Vusse G. J., Willemsen P. H., Coumans W. A., Roemen T. H., Reneman R. S. Lipid alterations in isolated, working rat hearts during ischemia and reperfusion: its relation to myocardial damage. Circ Res. 1989 Feb;64(2):304–314. doi: 10.1161/01.res.64.2.304. [DOI] [PubMed] [Google Scholar]
- van der Vusse G. J., Roemen T. H., Prinzen F. W., Coumans W. A., Reneman R. S. Uptake and tissue content of fatty acids in dog myocardium under normoxic and ischemic conditions. Circ Res. 1982 Apr;50(4):538–546. doi: 10.1161/01.res.50.4.538. [DOI] [PubMed] [Google Scholar]