Abstract
These studies examine the in vivo formation of a unique series of PGF2-like compounds (F2-isoprostanes) derived from free radical-catalyzed nonenzymatic peroxidation of arachidonic acid. We have previously shown that levels of these compounds increase up to 50-fold in rats administered CCl4. To understand further the formation of these compounds in vivo, we carried out a series of experiments assessing factors influencing their generation. After CCl4 (2 ml/kg) was administered to rats, plasma F2-isoprostanes increased 55-fold by 4 h. Levels declined thereafter, but at 24 h, they were still elevated 21-fold, indicating continued lipid peroxidation. Pretreatment of rats with isonicotinic acid hydrazide and phenobarbital to induce cytochrome P-450 enhanced the production of F2-isoprostanes after CCl4 administration eightfold and fivefold, respectively, whereas inhibition of the cytochrome P-450 system with SKF-525A and 4-methylpyrazole decreased formation of F2-isoprostanes after CCl4 by 55 and 82%, respectively. Further, the glutathione-depleting agents buthionine sulfoximine and phorone augmented the F2-isoprostane response to CCl4 by 22- and 11-fold, respectively. F2-isoprostanes are formed in situ esterified to lipids and, in addition to increases in levels of free F2-isoprostanes in the circulation, levels of F2-isoprostanes esterified to lipids in various organs and plasma also increase sharply during CCl4 poisoning. The measurement of F2-isoprostanes may facilitate investigation of the role of lipid peroxidation in human diseases.
Full text
PDF![2502](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d48/443408/32c07a5dc50f/jcinvest00054-0364.png)
![2503](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d48/443408/82f6e979909c/jcinvest00054-0365.png)
![2504](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d48/443408/c82cc0a5b001/jcinvest00054-0366.png)
![2505](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d48/443408/f431c6928d84/jcinvest00054-0367.png)
![2506](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d48/443408/755a5302ee8e/jcinvest00054-0368.png)
![2507](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d48/443408/7843124e6264/jcinvest00054-0369.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Burk R. F., Hill K. E., Lane J. M. Inhibition of CCl4 metabolism by oxygen varies between isoenzymes of cytochrome P-450. Biochem Biophys Res Commun. 1988 May 16;152(3):1463–1467. doi: 10.1016/s0006-291x(88)80450-9. [DOI] [PubMed] [Google Scholar]
- Burk R. F., Lane J. M. Ethane production and liver necrosis in rats after administration of drugs and other chemicals. Toxicol Appl Pharmacol. 1979 Sep 30;50(3):467–478. doi: 10.1016/0041-008x(79)90400-9. [DOI] [PubMed] [Google Scholar]
- Burk R. F., Reiter R., Lane J. M. Hyperbaric oxygen protection against carbon tetrachloride hepatotoxicity in the rat. Association with altered metabolism. Gastroenterology. 1986 Apr;90(4):812–818. doi: 10.1016/0016-5085(86)90856-5. [DOI] [PubMed] [Google Scholar]
- Burk R. J., Ludden T. M., Lane J. M. Pentane clearance from inspired air by the rat: dependence on the liver. Gastroenterology. 1983 Jan;84(1):138–142. [PubMed] [Google Scholar]
- Ferreyra E. C., de Fenos O. M., Bernacchi A. S., de Castro C. R., Castro J. A. Treatment of carbon tetrachloride-induced liver necrosis with chemical compounds. Toxicol Appl Pharmacol. 1977 Dec;42(3):513–521. doi: 10.1016/s0041-008x(77)80036-7. [DOI] [PubMed] [Google Scholar]
- Freeman B. A., Crapo J. D. Biology of disease: free radicals and tissue injury. Lab Invest. 1982 Nov;47(5):412–426. [PubMed] [Google Scholar]
- Halliwell B., Grootveld M. The measurement of free radical reactions in humans. Some thoughts for future experimentation. FEBS Lett. 1987 Mar 9;213(1):9–14. doi: 10.1016/0014-5793(87)81455-2. [DOI] [PubMed] [Google Scholar]
- Halliwell B., Gutteridge J. M. Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol. 1990;186:1–85. doi: 10.1016/0076-6879(90)86093-b. [DOI] [PubMed] [Google Scholar]
- Koop D. R. Oxidative and reductive metabolism by cytochrome P450 2E1. FASEB J. 1992 Jan 6;6(2):724–730. doi: 10.1096/fasebj.6.2.1537462. [DOI] [PubMed] [Google Scholar]
- Morrow J. D., Harris T. M., Roberts L. J., 2nd Noncyclooxygenase oxidative formation of a series of novel prostaglandins: analytical ramifications for measurement of eicosanoids. Anal Biochem. 1990 Jan;184(1):1–10. doi: 10.1016/0003-2697(90)90002-q. [DOI] [PubMed] [Google Scholar]
- Morrow J. D., Hill K. E., Burk R. F., Nammour T. M., Badr K. F., Roberts L. J., 2nd A series of prostaglandin F2-like compounds are produced in vivo in humans by a non-cyclooxygenase, free radical-catalyzed mechanism. Proc Natl Acad Sci U S A. 1990 Dec;87(23):9383–9387. doi: 10.1073/pnas.87.23.9383. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reiter R., Burk R. F. Formation of glutathione adducts of carbon tetrachloride metabolites in a rat liver microsomal incubation system. Biochem Pharmacol. 1988 Jan 15;37(2):327–331. doi: 10.1016/0006-2952(88)90736-8. [DOI] [PubMed] [Google Scholar]
- Riely C. A., Cohen G., Lieberman M. Ethane evolution: a new index of lipid peroxidation. Science. 1974 Jan 18;183(4121):208–210. doi: 10.1126/science.183.4121.208. [DOI] [PubMed] [Google Scholar]
- Takahashi K., Nammour T. M., Fukunaga M., Ebert J., Morrow J. D., Roberts L. J., 2nd, Hoover R. L., Badr K. F. Glomerular actions of a free radical-generated novel prostaglandin, 8-epi-prostaglandin F2 alpha, in the rat. Evidence for interaction with thromboxane A2 receptors. J Clin Invest. 1992 Jul;90(1):136–141. doi: 10.1172/JCI115826. [DOI] [PMC free article] [PubMed] [Google Scholar]