Abstract
Formate dehydrogenase H from Escherichia coli contains multiple redox centers, which include a molybdopterin cofactor, an iron-sulfur center, and a selenocysteine residue (SeCys-140 in the polypeptide chain) that is essential for catalytic activity. Here we show that addition of formate to the native enzyme induces a signal typical of Mo(V) species. This signal is detected by electron paramagnetic resonance (EPR) spectroscopy. Substitution of 77Se for natural isotope abundance Se leads to transformation of this signal, indicating a direct coordination of Se with Mo. Mutant enzyme with cysteine substituted at position 140 for the selenocysteine residue has decreased catalytic activity and exhibits a different EPR signal. Since determination of the Se content of wild-type enzyme indicates approximately 1 gram atom per mol, we conclude that it is the Se atom of the SeCys-140 residue in the protein that is coordinated directly with Mo. The amino acid sequence flanking the selenocysteine residue in formate dehydrogenase H is similar to a conserved sequence found in several other prokaryotic molybdopterin-dependent enzymes. In most of these other enzymes a cysteine residue, or in a few cases a serine or a selenocysteine residue, occurs in the position corresponding to SeCys-140 of formate dehydrogenase H. By analogy with formate dehydrogenase H in these other enzymes, at least one of the ligands to Mo should be provided by an amino acid residue of the protein. This ligand could be the Se of a selenocysteine residue, sulfur of a cysteine residue, or, in the case of a serine residue, oxygen.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Axley M. J., Böck A., Stadtman T. C. Catalytic properties of an Escherichia coli formate dehydrogenase mutant in which sulfur replaces selenium. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8450–8454. doi: 10.1073/pnas.88.19.8450. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Axley M. J., Grahame D. A. Kinetics for formate dehydrogenase of Escherichia coli formate-hydrogenlyase. J Biol Chem. 1991 Jul 25;266(21):13731–13736. [PubMed] [Google Scholar]
- Axley M. J., Grahame D. A., Stadtman T. C. Escherichia coli formate-hydrogen lyase. Purification and properties of the selenium-dependent formate dehydrogenase component. J Biol Chem. 1990 Oct 25;265(30):18213–18218. [PubMed] [Google Scholar]
- Barber M. J., Siegel L. M. Electron paramagnetic resonance and potentiometric studies of arsenite interaction with the molybdenum centers of xanthine oxidase, xanthine dehydrogenase, and aldehyde oxidase: a specific stabilization of the molybdenum(V) oxidation state. Biochemistry. 1983 Feb 1;22(3):618–624. doi: 10.1021/bi00272a014. [DOI] [PubMed] [Google Scholar]
- Baron C., Heider J., Böck A. Interaction of translation factor SELB with the formate dehydrogenase H selenopolypeptide mRNA. Proc Natl Acad Sci U S A. 1993 May 1;90(9):4181–4185. doi: 10.1073/pnas.90.9.4181. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berg B. L., Li J., Heider J., Stewart V. Nitrate-inducible formate dehydrogenase in Escherichia coli K-12. I. Nucleotide sequence of the fdnGHI operon and evidence that opal (UGA) encodes selenocysteine. J Biol Chem. 1991 Nov 25;266(33):22380–22385. [PubMed] [Google Scholar]
- Bilous P. T., Cole S. T., Anderson W. F., Weiner J. H. Nucleotide sequence of the dmsABC operon encoding the anaerobic dimethylsulphoxide reductase of Escherichia coli. Mol Microbiol. 1988 Nov;2(6):785–795. doi: 10.1111/j.1365-2958.1988.tb00090.x. [DOI] [PubMed] [Google Scholar]
- Bokranz M., Gutmann M., Körtner C., Kojro E., Fahrenholz F., Lauterbach F., Kröger A. Cloning and nucleotide sequence of the structural genes encoding the formate dehydrogenase of Wolinella succinogenes. Arch Microbiol. 1991;156(2):119–128. doi: 10.1007/BF00290984. [DOI] [PubMed] [Google Scholar]
- Bray R. C. The inorganic biochemistry of molybdoenzymes. Q Rev Biophys. 1988 Aug;21(3):299–329. doi: 10.1017/s0033583500004479. [DOI] [PubMed] [Google Scholar]
- Chen G. T., Axley M. J., Hacia J., Inouye M. Overproduction of a selenocysteine-containing polypeptide in Escherichia coli: the fdhF gene product. Mol Microbiol. 1992 Mar;6(6):781–785. doi: 10.1111/j.1365-2958.1992.tb01528.x. [DOI] [PubMed] [Google Scholar]
- Dilworth G. L. Properties of the selenium-containing moiety of nicotinic acid hydroxylase from Clostridium barkeri. Arch Biochem Biophys. 1982 Nov;219(1):30–38. doi: 10.1016/0003-9861(82)90130-8. [DOI] [PubMed] [Google Scholar]
- Garrett R. M., Rajagopalan K. V. Molecular cloning of rat liver sulfite oxidase. Expression of a eukaryotic Mo-pterin-containing enzyme in Escherichia coli. J Biol Chem. 1994 Jan 7;269(1):272–276. [PubMed] [Google Scholar]
- Gladyshev V. N., Khangulov S. V., Stadtman T. C. Nicotinic acid hydroxylase from Clostridium barkeri: electron paramagnetic resonance studies show that selenium is coordinated with molybdenum in the catalytically active selenium-dependent enzyme. Proc Natl Acad Sci U S A. 1994 Jan 4;91(1):232–236. doi: 10.1073/pnas.91.1.232. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holcenberg J. S., Stadtman E. R. Nicotinic acid metabolism. 3. Purification and properties of a nicotinic acid hydroxylase. J Biol Chem. 1969 Mar 10;244(5):1194–1203. [PubMed] [Google Scholar]
- Lin J. T., Goldman B. S., Stewart V. Structures of genes nasA and nasB, encoding assimilatory nitrate and nitrite reductases in Klebsiella pneumoniae M5al. J Bacteriol. 1993 Apr;175(8):2370–2378. doi: 10.1128/jb.175.8.2370-2378.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McPherson M. J., Baron A. J., Pappin D. J., Wootton J. C. Respiratory nitrate reductase of Escherichia coli. Sequence identification of the large subunit gene. FEBS Lett. 1984 Nov 19;177(2):260–264. doi: 10.1016/0014-5793(84)81295-8. [DOI] [PubMed] [Google Scholar]
- Pierson D. E., Campbell A. Cloning and nucleotide sequence of bisC, the structural gene for biotin sulfoxide reductase in Escherichia coli. J Bacteriol. 1990 Apr;172(4):2194–2198. doi: 10.1128/jb.172.4.2194-2198.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rajagopalan K. V., Johnson J. L. The pterin molybdenum cofactors. J Biol Chem. 1992 May 25;267(15):10199–10202. [PubMed] [Google Scholar]
- Rossmann R., Sawers G., Böck A. Mechanism of regulation of the formate-hydrogenlyase pathway by oxygen, nitrate, and pH: definition of the formate regulon. Mol Microbiol. 1991 Nov;5(11):2807–2814. doi: 10.1111/j.1365-2958.1991.tb01989.x. [DOI] [PubMed] [Google Scholar]
- Shuber A. P., Orr E. C., Recny M. A., Schendel P. F., May H. D., Schauer N. L., Ferry J. G. Cloning, expression, and nucleotide sequence of the formate dehydrogenase genes from Methanobacterium formicicum. J Biol Chem. 1986 Oct 5;261(28):12942–12947. [PubMed] [Google Scholar]
- Siddiqui R. A., Warnecke-Eberz U., Hengsberger A., Schneider B., Kostka S., Friedrich B. Structure and function of a periplasmic nitrate reductase in Alcaligenes eutrophus H16. J Bacteriol. 1993 Sep;175(18):5867–5876. doi: 10.1128/jb.175.18.5867-5876.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wootton J. C., Nicolson R. E., Cock J. M., Walters D. E., Burke J. F., Doyle W. A., Bray R. C. Enzymes depending on the pterin molybdenum cofactor: sequence families, spectroscopic properties of molybdenum and possible cofactor-binding domains. Biochim Biophys Acta. 1991 Mar 29;1057(2):157–185. doi: 10.1016/s0005-2728(05)80100-8. [DOI] [PubMed] [Google Scholar]
- Zinoni F., Birkmann A., Leinfelder W., Böck A. Cotranslational insertion of selenocysteine into formate dehydrogenase from Escherichia coli directed by a UGA codon. Proc Natl Acad Sci U S A. 1987 May;84(10):3156–3160. doi: 10.1073/pnas.84.10.3156. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zinoni F., Birkmann A., Stadtman T. C., Böck A. Nucleotide sequence and expression of the selenocysteine-containing polypeptide of formate dehydrogenase (formate-hydrogen-lyase-linked) from Escherichia coli. Proc Natl Acad Sci U S A. 1986 Jul;83(13):4650–4654. doi: 10.1073/pnas.83.13.4650. [DOI] [PMC free article] [PubMed] [Google Scholar]