Abstract
Due to the intriguing morphology, lifecycle, and diversity of butterflies and moths, Lepidoptera are emerging as model organisms for the study of genetics, evolution and speciation. The progress of these studies relies on decoding Lepidoptera genomes, both nuclear and mitochondrial. Here we describe a protocol to obtain mitogenomes from Next Generation Sequencing reads performed for whole-genome sequencing and report the complete mitogenome of Papilio (Pterourus) glaucus. The circular mitogenome is 15,306 bp in length and rich in A and T. It contains 13 protein-coding genes (PCGs), 22 transfer-RNA-coding genes (tRNA), and 2 ribosomal-RNA-coding genes (rRNA), with a gene order typical for mitogenomes of Lepidoptera. We performed phylogenetic analyses based on PCG and RNA-coding genes or protein sequences using Bayesian Inference and Maximum Likelihood methods. The phylogenetic trees consistently show that among species with available mitogenomes Papilio glaucus is the closest to Papilio (Agehana) maraho from Asia.
Keywords: Papilio glaucus, Mitochondrial genome, Illumina sequencing, Phylogeny
Introduction
The order Lepidoptera contains approximately 160,000 described and half a million estimated species (Kristensen et al., 2007), and it represents one of the most diverse and fascinating group of insects. Recent studies have revealed their potential as model organisms to study the genetics of interesting phenotypic traits in butterflies, such as the Batesian mimicry in swallowtails (Clarke and Sheppard, 1972, Nishikawa et al., 2013), migration in the monarch (Zhan et al., 2011, Zhan et al., 2014) and wing pattern development in longwings (Hines et al., 2012, Surridge et al., 2011). The profound diversity and the recent evolutionary radiation of Lepidoptera provide rich materials to study evolution, speciation and adaptation (Engsontia et al., 2014, Zhang et al., 2013a). These studies benefit significantly from decoding the genomes of various Lepidoptera species.
Recently, we published the draft genome of Eastern Tiger swallowtail Papilio (Pterourus) glaucus using next generation sequencing techniques (Cong et al., 2015). This nuclear whole genome was the first reported from the Papilionidae family. Traditional genome assemblers failed to automatically assemble the mitogenome, probably due to the difficulty in distinguishing NGS reads of the mitogenome from those of nuclear genome, the presence of nuclear copies of mitochondrial (NUMT) DNA (which can lead to conflicts in assembly), and the poor signal-to-noise ratio caused by the high coverage of mitochondrial DNA (Hahn et al., 2013). However, a dedicated effort should be able to assemble the mitogenome from whole-genome sequencing reads. The mitogenome sequences are expected to be useful for phylogenetic studies, and they have been obtained for many species. The Papilionidae family has over 570 species worldwide (C.A. Bridges, 1988), while only 17 species have complete mitogenomes currently available in GenBank (included in Table 1, accessed on: 11/28/2014).
Table 1.
Family | Species | Length (bp) | Accession number | References |
---|---|---|---|---|
Papilionidae | Papilio glaucus | 15,306 | KR822739 | This study |
Papilio bianor | 15,357 | NC_018040.1 | Unpublished | |
Papilio dardanus | 15,337 | JX313686.2 | Unpublished | |
Papilio maackii | 15,357 | KC433408.1 | Dong et al. (2013) | |
Papilio machaon | 15,185 | HM243594.1 | Unpublished | |
Papilio maraho | 16,094 | FJ810212.1 | Unpublished | |
Papilio polytes | 15,256 | KM014701.1 | Wang et al. (2014a) | |
Papilio syfanius | 15,359 | KJ396621.1 | Dong et al. (2014) | |
Parnassius apollo | 15,404 | KF746065.1 | Chen et al. (2014a) | |
Parnassius bremeri | 15,389 | NC_014053.1 | Kim et al. (2009) | |
Parnassius imperator | 15,424 | KM507326.1 | Wang et al. (2014b) | |
Sericinus montela | 15,242 | HQ259122.1 | Ji et al. (2012) | |
Luehdorfia taibai | 15,553 | KC952673.1 | Lian-Xi et al. (2014) | |
Teinopalpus aureus | 15,242 | HM563681.1 | Qin et al. (2012a) | |
Lamproptera curius | 15,277 | KJ141168.1 | Unpublished | |
Graphium timur | 15,226 | KJ472924.1 | Chen et al. (2014b) | |
Atrophaneura alcinous | 15,266 | KJ540880.1 | Chen et al. (2014c) | |
Troides aeacus | 15,263 | EU625344.1 | Unpublished | |
Lycaenidae | Coreana raphaelis | 15,314 | DQ102703.1 | Kim et al. (2006) |
Cupido argiades | 15,330 | KC310728.1 | Zhang et al. (2013b) | |
Curetis bulis | 15,162 | JX262888.1 | Zhang et al. (2013c) | |
Lycaena phlaeas | 15,280 | JX262887.1 | Zhang et al. (2013c) | |
Protantigius superans | 15,248 | HQ184265.1 | Kim et al. (2011a) | |
Spindasis takanonis | 15,349 | HQ184266.1 | Kim et al. (2011a) | |
Riodinidae | Abisara fylloides | 15,301 | HQ259069.1 | Unpublished |
Apodemia mormo | 15,262 | KJ647171.1 | Kim and Kim (2014) | |
Pieridae | Anthocharis bambusarum | 15,180 | KC465748.1 | Unpublished |
Aporia crataegi | 15,140 | JN796473.1 | Park et al. (2012) | |
Aporia intercostata | 15,144 | KC461928.1 | Unpublished | |
Catopsilia pomona | 15,142 | JX274649.1 | Hao et al. (2014) | |
Delias hyparete | 15,186 | JX094279.1 | Shi et al. (2012) | |
Eurema hecabe | 15,160 | KC257480.1 | Sun et al. (2014) | |
Hebomoia glaucippe | 15,701 | KC489093.1 | Hao et al. (2013a) | |
Leptidea morsei | 15,122 | JX274648.1 | Hao et al. (2014) | |
Artogeia melete | 15,140 | EU597124.1 | Hong et al. (2009) | |
Pieris rapae | 15,157 | NC_015895.1 | Mao et al. (2010) | |
Hesperiidae | Ampittia dioscorides | 15,313 | KM102732.1 | Unpublished |
Carterocephalus silvicola | 15,765 | KJ629163.1 | Kim et al. (2014) | |
Celaenorrhinus maculosa | 15,282 | KF543077.1 | Wang et al. (2013a) | |
Choaspes benjaminii | 15,300 | KJ629164.1 | Kim et al. (2014) | |
Ctenoptilum vasava | 15,468 | JF713818.1 | Hao et al. (2012) | |
Daimio tethys | 15,350 | KJ629165.1 | Kim et al. (2014) | |
Erynnis montanus | 15,530 | KC659955.1 | Wang et al. (2014c) | |
Lobocla bifasciatus | 15,366 | KJ629166.1 | Kim et al. (2014) | |
Ochlodes venata | 15,622 | HM243593.1 | Unpublished | |
Potanthus flavus | 15,267 | KJ629167.1 | Kim et al. (2014) | |
Nymphalidae | Abrota ganga | 15,356 | KF590536.1 | Wu et al. (2014) |
Acraea issoria | 15,245 | GQ376195.1 | Hu et al. (2010) | |
Apatura ilia | 15,242 | JF437925.1 | Chen et al. (2012) | |
Apatura metis | 15,236 | JF801742.1 | Zhang et al. (2012) | |
Argynnis childreni | 15,131 | KF590547.1 | Wu et al. (2014) | |
Argynnis hyperbius | 15,156 | JF439070.1 | Wang et al. (2011) | |
Athyma asura | 15,181 | KF590542.1 | Wu et al. (2014) | |
Athyma cama | 15,269 | KF590526.1 | Wu et al. (2014) | |
Athyma kasa | 15,230 | KF590524.1 | Wu et al. (2014) | |
Athyma opalina | 15,240 | KF590551.1 | Wu et al. (2014) | |
Athyma perius | 15,277 | KF590528.1 | Wu et al. (2014) | |
Athyma selenophora | 15,208 | KF590529.1 | Wu et al. (2014) | |
Athyma sulpitia | 15,268 | JQ347260.1 | Tian et al. (2012) | |
Bhagadatta austenia | 15,615 | KF590545.1 | Wu et al. (2014) | |
Calinaga davidis | 15,267 | HQ658143.1 | Xia et al. (2011) | |
Danaus chrysippus | 15,236 | KF690637.1 | Gan et al. (2014a) | |
Danaus plexippus | 15,314 | KC836923.1 | Servin-Garciduenas and Martinez-Romero (2014) | |
Dichorragia nesimachus | 15,355 | KF590541.1 | Wu et al. (2014) | |
Dophla evelina | 15,320 | KF590532.1 | Wu et al. (2014) | |
Euploea core | 15,192 | KF590546.1 | Wu et al. (2014) | |
Euploea midamus | 15,187 | KJ866207.1 | Unpublished | |
Euploea mulciber | 15,166 | HQ378507.1 | Hao et al. (2013b) | |
Euthalia irrubescens | 15,365 | KF590527.1 | Wu et al. (2014) | |
Fabriciana nerippe | 15,140 | JF504707.1 | Kim et al. (2011b) | |
Hamadryas epinome | 15,207 | KM378244.1 | Cally et al. (2014) | |
Heliconius cydno | 15,367 | KM208636.1 | Qian (2014) | |
Heliconius hecale | 15,338 | KM068091.1 | Shen and Wang (2014) | |
Heliconius melpomene | 15,328 | KP100653.1 | (Heliconius Genome, 2012, Meng et al., 2014) | |
Heliconius pachinus | 15,369 | KM014809.1 | Huang et al. (2014a) | |
Hipparchia autonoe | 15,489 | GQ868707.1 | Kim et al. (2010) | |
Ideopsis similis | 15,200 | KJ476729.1 | Gan et al. (2014b) | |
Issoria lathonia | 15,172 | HM243590.1 | Unpublished | |
Junonia almana | 15,256 | KF590539.1 | Wu et al. (2014) | |
Junonia orithya | 15,214 | KF199862.1 | Shi et al. (2013a) | |
Kallima inachus | 15,183 | JN857943.1 | Qin et al. (2012b) | |
Lexias dirtea | 15,250 | KF590531.1 | Wu et al. (2014) | |
Libythea celtis | 15,164 | HQ378508.1 | Unpublished | |
Melanargia asiatica | 15,142 | KF906486.1 | Huang et al. (2014b) | |
Melanitis leda | 15,122 | JF905446.1 | Shi et al. (2013b) | |
Melanitis phedima | 15,142 | KF590538.1 | Wu et al. (2014) | |
Melitaea cinxia | 15,162 | HM243592.1 | Unpublished | |
Neope pulaha | 15,209 | KF590543.1 | Wu et al. (2014) | |
Neptis philyra | 15,164 | KF590552.1 | Wu et al. (2014) | |
Neptis soma | 15,130 | KF590533.1 | Wu et al. (2014) | |
Pandita sinope | 15,257 | KF590530.1 | Wu et al. (2014) | |
Pantoporia hordonia | 15,603 | KF590534.1 | Wu et al. (2014) | |
Parantica sita | 15,211 | KF590544.1 | Wu et al. (2014) | |
Pararge aegeria | 15,240 | KJ547676.1 | Teixeira da Costa (2014) | |
Parasarpa dudu | 15,236 | KF590537.1 | Wu et al. (2014) | |
Parthenos sylvia | 15,249 | KF590550.1 | Wu et al. (2014) | |
Polyura arja | 15,363 | KF590540.1 | Wu et al. (2014) | |
Sasakia charonda | 15,233 | JX119051.1 | Wang et al. (2012) | |
Sasakia funebris | 15,233 | JX131328.1 | Wang et al. (2013b) | |
Tanaecia julii | 15,316 | KF590548.1 | Wu et al. (2014) | |
Timelaea maculata | 15,178 | KC572131.1 | Cao et al. (2013) | |
Tirumala limniace | 15,285 | KJ784473.1 | Gan et al. (2014c) | |
Triphysa phryne | 15,143 | KF906487.1 | Zhang et al. (2014a) | |
Yoma sabina | 15,330 | KF590535.1 | Wu et al. (2014) | |
Ypthima akragas | 15,227 | KF590553.1 | Wu et al. (2014) | |
Cossidae | Eogystia hippophaecolus | 15,431 | KC831443.1 | Gong et al. (2014) |
Bombycidae | Bombyx mori | 15,643 | KM279431.1 | Zhang et al. (2014b) |
Hepialidae | Thitarodes renzhiensis | 16,173 | NC_018094.1 | Cao et al. (2012) |
The insect mitogenome is a circular DNA of 14–19 kilobases (kb), containing 13 protein-coding genes (PCGs), 2 ribosomal-RNA-coding genes (rRNAs), 22 transfer-RNA-coding genes (tRNAs), and an A + T rich displacement loop (D-loop) control region (Cameron, 2014). Because of their maternal inheritance, compact structure, lack of genetic recombination, and relatively fast evolutionary rate, mitogenomes have been used widely in molecular phylogenetics and evolution studies (Cameron, 2014, Moritz et al., 1987). Here, we reconstruct and annotate the complete mitogenome of Papilio glaucus from next generation sequencing reads, and perform phylogenetic analyses of P. glaucus mitogenome with available complete mitogenomes of butterflies.
Materials and methods
Library preparation and Illumina sequencing
A male P. glaucus was caught and freshly frozen from Lake Ray Roberts State Park, Greenbelt Corridor along the Elm Fork of the Trinity River, 33.2536, − 97.0434, Denton County, Texas, USA (date 4-VIII-2013). The specimen will be deposited in the National Museum of Natural History, Smithsonian Institution, Washington, DC, USA (USNM). Detailed procedures and protocols for library preparation were described in Cong et al. (2015). Briefly, we extracted genomic DNA from a piece of muscle dissected from the butterfly thorax using the ChargeSwitch gDNA mini tissue kit (Life Technologies, Grand Island, NY, USA). 250 bp and 500 bp paired-end libraries were made following the Illumina TruSeq DNA sample preparation guide using enzymes from NEBNext Modules (New England Biolabs, Ipswich, MA, USA). These libraries were sequenced at the genomics core facility in UT Southwestern Medical Center for 150 bp from both ends with a rapid run on Illumina HiSeq1500.
Sequence assembly
Sequencing reads were processed sequentially by MIRABAIT (Chevreux et al., 1999) to remove contamination from sequence adapters, by Fastq_quality_trimmer (http://hannonlab.cshl.ed/fastx_toolkit/) to trim low-quality regions at both ends and by QUAKE to correct errors (Cong et al., 2015, Kelley et al., 2010). From either the 250 bp or 500 bp library, we used mitochondrial baiting and iterative mapping (MITObim) v1.6 (Hahn et al., 2013) to assemble the mitogenome using two approaches: (1) using mitogenomes of Papilio maackii (KC433408.1), Papilio polytes (KM014701.1) and Papilio maraho (FJ810212.1) as references to guide the assembly; (2) using a short COI barcode sequence (a segment of about 600 bp from the mitochondrial gene cytochrome oxidase I) of P. glaucus (GU090087.1) as the starting seed. We used the default parameters for MITObim except for setting the — kbait to be 35 instead of 31.
The genome assemblies directly produced by the reference-guided mode in MITObim did not directly consider that the mitogenome should be a circular DNA and that the reads mapped to the N-terminus of the reference sequence could overlap with reads mapped to the C-terminus of the reference mitogenome. Therefore, it produced sequences whose C-terminal segment (usually about several hundred base pairs) is a duplication of the N-terminal segment. We detected such duplicated regions by aligning the N-terminal half and C-terminal half with BLASTN and manually removed the redundant segments. We also adjusted the linear representation of the circular DNA by circular permutation so that the sequence starts with the coding gene for ND2, which is the convention for most Lepidoptera sequences deposited in the database.
We aligned the mitogenome sequences produced by different methods with MAFFT (Katoh and Standley, 2013) (Supplementary data). These assemblies mostly agree with each other, with most discrepancies located in the D-loop region. We derived our final mitogenome sequence from the alignment of these different assemblies by taking the dominant nucleotide or gap at each position.
Annotation and analysis of the mitochondrial genome
The mitogenome sequence was annotated using the MITOS web server (Bernt et al., 2013). We translated the sequences of PCGs to protein sequences using the genetic code for invertebrate mitogenomes. Secondary structures of tRNA genes were predicted using the same server.
Assembly quality assessment
We first checked if the assembly was well-supported by the sequencing reads by mapping the reads to the mitogenome using bowtie2 v2.2.3 (Langmead and Salzberg, 2012). The alignments were combined into one single SAM-format file, processed with SAMtools (Li et al., 2009) and visualized in Integrative Genomics Viewer (IGV) (Robinson et al., 2011). Number of mapped reads (coverage by reads) at each position was calculated using bedtools v2.20.1 (Quinlan and Hall, 2010) and the histogram of the coverage was prepared in IBM SPSS Statistics v21 and Microsoft Excel 2010.
Second, we assessed the quality of our assembly by its consistency with other published Papilio sequences in the protein-, rRNA- and tRNA-coding regions. We aligned the rRNA- and tRNA-coding sequences directly and aligned translated sequences for PCGs to the corresponding proteins of other published Papilio mitogenomes. Alignments confirmed that our sequences are consistent with the majority of these published mitogenomes, and gaps are only in regions that are poorly conserved among other Papilio species.
Finally, we confirmed the assembly by comparing with Sanger sequencing results. We compared the mitogenome sequence with a reported 2291 bp partial mitogenome sequence of P. glaucus (accession: AF044013) (Caterino and Sperling, 1999) using BLAST. In addition, we sequenced the D-loop region and one arbitrarily selected coding region that partly covers ND4 and ND5. We amplified the two fragments from genomic DNA using primers shown in Table 2 with AmpliTaq Gold® 360 Master Mix (Life Technologies, Grand Island, NY, USA), following the manufacturer's protocol. Amplified products were separated by 2% E-Gel® EX Agarose Gels (Life Technologies, Grand Island, NY, USA) and purified by Zymoclean™ Gel DNA Recovery Kit (Zymo Research, Irvine, CA, USA). The purified DNA fragments were sent for Sanger sequencing in the sequencing core facility at UT Southwestern Medical Center. Sequencing results were manually confirmed by visualizing the traces in FinchTV v1.4 and then compared with the assembled mitogenome.
Table 2.
Fragment location on genome | Primer | Primer sequence (5′ to 3′) |
---|---|---|
14,387–15,306, 1–104 | D-loopF | GCAACTGCTGGCACAAAAT |
D-loopR | CCAATTCAACATCCCAATCA | |
7428–8136 | ND4F | CTAATCCTAACCCATCCCAACC |
ND4R | TAGCTGCTCCTCCTTCTATGA |
Phylogenetic analysis
104 complete, non-redundant butterfly mitogenomes that are currently available were downloaded from GenBank (Table 1). Moth mitogenomes from Thitarodes renzhiensis (NC_018094.1), Bombyx mori (KM279431.1), and Eogystia hippophaecolus (KC831443.1) were also downloaded and used as outgroups. DNA sequences of the 37 protein- and RNA-coding genes were aligned by MAFFT. We manually checked the alignments of each gene, corrected sequences from some species with annotation errors based on consensus, replaced mitogenomes of poor quality (for example, sequences with frame-shift mutation that causes premature ending of proteins) with alternative mitogenome from the same species, and removed positions with large gaps and their surrounding regions with uncertain alignment.
The processed alignments were analyzed for phylogeny with Bayesian Inference and Maximum likelihood methods using MrBayes v3.2 (Huelsenbeck and Ronquist, 2001) and RaxML v8.1 (Stamatakis, 2006). We built trees with a different partitioning of the data sets (unpartitioned; partitioned by genes, PCG codon positions, and the exclusion of 3rd codon positions of PCGs). In addition, the translated protein sequences were aligned with MAFFT and analyzed with MrBayes. For analyses based on DNA alignments, the most suitable nucleotide substitution model (GTR + I + G) selected by jModelTest v2.1.7 (Darriba et al., 2012) was used, and for the protein-based analyses, we used a mixed model (Poisson, Jones, Dayhoff, Mtrev, Mtmam, Wag, Rtrev, Cprev, Vt, and Blosum) provided by the MrBayes program. The resulting phylogenetic trees were visualized in FigTree v1.4.2.
Results
Coverage of the mitogenome assembly by the reads
The coverage of the assembled P. glaucus mitogenome was high by the sequencing reads, with about 6000 fold mean coverage at base pair level and 500 fold minimal coverage (Fig. 1A and B). As shown in Fig. 1A, the regions with the lowest coverage were the beginning, the end and the D-loop regions. The low coverage at the beginning and the end of the mitogenome was primarily an artifact from limiting each read to map to only one most likely position: the circular DNA was represented as a linear sequence, and reads that should map partly to the beginning and partly to the end were restricted to map to either the beginning or the end.
The lower coverage in the D-loop might indicate potential errors in that region. However, independent Sanger sequencing of both the D-loop region (from the end of rrnS to the beginning of ND2) and another arbitrarily selected region (from the end of ND4 to the beginning of ND5), completely matched our assembly, indicating its high quality. In addition, the mitogenome sequence also agreed with the partial mitogenome (2291 bp) sequence of P. glaucus (accession: AF044013) in the database. Our sequence showed 0.3% sequence divergence from the previous sequence (only 6 out of 2291 positions are different), which likely corresponded to sequence variations between different individuals of the same species.
Instead, the low coverage of the D-loop region is probably related to its AT-rich composition, which tends to break during library preparation and is thus underrepresented in the sequencing libraries (Benjamini and Speed, 2012). Indeed, we observed that the percentage of A and T in a 50 bp window from the mitogenome is negatively correlated with the coverage for that region by the reads (Fig. 1C).
Base composition and genome structure
The P. glaucus mitogenome is a closed circular DNA of 15,306 bp. The nucleotide composition of the majority strand is A = 6117 (39.96%), T = 6193 (40.46%), G = 1167 (7.62%), and C = 1829 (11.95%), which is highly biased towards A and T. The majority strand has a negative AT-skew (− 0.0062) and GC-skew (− 0.2210) (Table 3), indicating a higher occurrence of T over A, C over G nucleotides on this strand. The P. glaucus mitogenome retains the typical insect mitogenome gene set, including 13 PCGs (ND1-6, COX1-3, ND4L, ATP8, ATP6, and CYTB), 22 tRNA genes (two for serine and leucine and one for each of the remaining amino acids), 2 ribosomal RNAs (rrnL and rrnS), and an A + T rich D-loop control region (Fig. 2 and Table 4).
Table 3.
Nucleotides | Whole genome | PCGs | tRNAs | rRNAs | A + T rich region | Intergenic spacer region |
---|---|---|---|---|---|---|
A% | 39.96 | 39.52 | 40.06 | 40.76 | 47.13 | 39.36 |
T% | 40.46 | 39.50 | 40.96 | 43.33 | 47.54 | 45.74 |
G% | 7.62 | 8.33 | 8.32 | 4.90 | 1.84 | 4.26 |
C% | 11.95 | 12.65 | 10.67 | 11.00 | 3.48 | 10.64 |
A + T% | 80.43 | 79.02 | 81.01 | 84.10 | 94.67 | 85.11 |
G + C% | 19.57 | 20.98 | 18.99 | 15.90 | 5.33 | 14.89 |
AT-skew⁎ | − 0.0062 | 0.0003 | − 0.0111 | − 0.0306 | − 0.0043 | − 0.0750 |
GC-skew⁎⁎ | − 0.2210 | − 0.2061 | − 0.1241 | − 0.3832 | − 0.3077 | − 0.4286 |
AT-skew = [A − T] / [A + T].
GC-skew = [G − C] / [G + C] (Perna and Kocher, 1995).
Table 4.
Gene | Direction | From | To | Size | Intergenic nucleotides | Anticodon | Start codon | Stop codon |
---|---|---|---|---|---|---|---|---|
ND2 | F | 1 | 1014 | 1014 | − 2 | – | ATT | TAA |
trnW | F | 1013 | 1077 | 65 | − 8 | TCA | – | – |
trnC | R | 1070 | 1131 | 62 | 3 | GCA | – | – |
trnY | R | 1135 | 1199 | 65 | 2 | GTA | – | – |
COX1 | F | 1202 | 2732 | 1531 | 0 | – | CGA | T |
trnL2 | F | 2733 | 2800 | 68 | 0 | TAA | – | – |
COX2 | F | 2801 | 3482 | 682 | 0 | – | ATG | T |
trnK | F | 3483 | 3552 | 70 | 0 | CTT | – | – |
trnD | F | 3553 | 3619 | 67 | 0 | GTC | – | – |
ATP8 | F | 3620 | 3787 | 168 | − 7 | – | ATT | TAA |
ATP6 | F | 3781 | 4458 | 678 | 7 | – | ATG | TAA |
COX3 | F | 4466 | 5254 | 789 | 2 | – | ATG | TAA |
trnG | F | 5257 | 5322 | 66 | − 3 | TCC | – | – |
ND3 | F | 5320 | 5676 | 357 | − 2 | – | ATA | TAG |
trnA | F | 5675 | 5738 | 64 | − 1 | TGC | – | – |
trnR | F | 5738 | 5801 | 64 | − 1 | TCG | – | – |
trnN | F | 5801 | 5866 | 66 | 0 | GTT | – | – |
trnS1 | F | 5867 | 5927 | 61 | 1 | ACT | – | – |
trnE | F | 5929 | 5995 | 67 | − 2 | TTC | – | – |
trnF | R | 5994 | 6060 | 67 | 0 | GAA | – | – |
ND5 | R | 6061 | 7794 | 1734 | 0 | – | ATA | TAA |
trnH | R | 7795 | 7860 | 66 | 0 | GTG | – | – |
ND4 | R | 7861 | 9202 | 1342 | − 4 | – | ATA | T |
ND4L | R | 9199 | 9489 | 291 | 6 | – | ATG | TAA |
trnT | F | 9496 | 9559 | 64 | 0 | TGT | – | – |
trnP | R | 9560 | 9623 | 64 | 2 | TGG | – | – |
ND6 | F | 9626 | 10,159 | 534 | 4 | – | ATT | TAA |
CYTB | F | 10,164 | 11,318 | 1155 | 2 | – | ATA | TAA |
trnS2 | F | 11,321 | 11,385 | 65 | 16 | TGA | – | – |
ND1 | R | 11,402 | 12,340 | 939 | 1 | – | ATG | TAG |
trnL1 | R | 12,342 | 12,409 | 68 | 0 | TAG | – | – |
rrnL | R | 12,410 | 13,728 | 1319 | 0 | – | – | – |
trnV | R | 13,729 | 13,791 | 63 | 0 | TAC | – | – |
rrnS | R | 13,792 | 14,572 | 781 | 0 | – | – | – |
A + T rich region | 14,573 | 15,060 | 488 | 0 | – | – | – | |
trnM | F | 15,061 | 15,129 | 69 | 0 | CAT | – | – |
trnI | F | 15,130 | 15,193 | 64 | − 3 | GAT | – | – |
trnQ | R | 15,191 | 15,258 | 68 | 48 | TTG | – | – |
Annotation of the mitogenome
The annotation of the mitogenome is illustrated in Fig. 2 and summarized in Table 4. Nine protein-coding genes (ND2, COX1, COX2, ATP8, ATP6, COX3, ND3, ND6, and CYTB) are coded on the majority strand. COX1 uses start codon CGA, which is consistent with many other insect mitogenomes (Kim et al., 2009). A recent study using an expressed sequence tag from a Lepidopteran species confirmed the presence of COXI transcripts starting from CGA (Margam et al., 2011). Each of the rest of the genes starts with the typical ATN. COX1, COX2 and ND4 use an incomplete stop codon T (Ojala et al., 1981), and a complete TAA codon will likely be formed during mRNA maturation (Boore, 1999, Ojala et al., 1981). The 13 PCGs have a total length of 11,214 bp (Table 4).
14 out of the 22 tRNA-coding genes are encoded on the majority strand. The tRNAs have a total length of 1443 bp, and their individual lengths range from 61 bp to 70 bp (Table 4). Secondary structures predicted by MITOS suggest that all tRNA genes adopt a typical cloverleaf structure except for trnS1 (Fig. 3). The dihydrouridine (DHU) arm of trnS1 does not form a stable stem-loop structure, which is very common in butterfly mitogenomes (Kim et al., 2014, Lu et al., 2013). The two rRNA genes, rrnL and rrnS, are located on the minority strand, and their lengths are 1319 bp and 781 bp, respectively (Table 4).
A 488 bp A + T rich region (A + T content: 94.7%) connects rrnS and trnM. This region contains an “ATAGA” motif located 19 bp downstream from rrnS and followed by 14 bp of poly-T stretch that is consistent with a gene regulation element commonly found in Lepidoptera (Lu et al., 2013, Salvato et al., 2008). In addition to this A + T rich region, there are 94 bp non-coding nucleotides that make up 12 intergenic spacer sequences, ranging from 1 bp to 48 bp in length. The longest 48 bp spacer is located between trnQ and ND2, and a 16 bp spacer is located between trnS2 and ND1 (Table 4). In addition, there are 33 bp of overlapping sequences at 10 locations. The longest 8 bp overlap is between trnW and trnC. There is a 7 bp “ATGATAA” overlap between ATP8 and ATP6 (Table 4), and this is a common feature for Lepidopteran mitogenomes (Lu et al., 2013).
Phylogenetic relationships
We phylogenetically analyzed 105 butterfly species from 6 families: Papilionidae, Hesperiidae, Pieridae, Lycaenidae, Riodinidae, and Nymphalidae, and used 3 species of moths as outgroups. Maximum Likelihood analysis of the DNA alignments (Fig. 4A) and Bayesian Inference of DNA (Fig. 4B and Supplemental S2) and protein sequences (Fig. 4C) correctly partitioned butterflies into 6 families and suggested the same tree topology at the family level: (Papilionidae + (Hesperiidae + (Pieridae + ((Riodinidae + Lycaenidae) + Nymphalidae)))). Tree topologies between different methods were very similar. The positions of several species vary between trees obtained with different methods, such as Carterocephalus silvicola, Hebomoia glaucippe, and Ypthima akragas. However, all the trees consistently place P. glaucus, the only available mitogenome from the subgenus Pterourus, as a sister of P. maraho, the only available mitogenome from the subgenus Agehana (Fig. 4 and Supplemental S2).
Discussion
The traditional method to obtain the mitogenome is through Sanger sequencing of a couple of overlapping segments. Here, we describe our protocol of assembling mitogenomes from Next Generation Sequencing reads for whole genome sequencing, and report the mitogenome of Eastern tiger swallowtail, P. glaucus. We used MITObim, a published tool designed for this task. MITObim has a reference-guided mode: it finds the conserved regions of a mitogenome using related reference species and extends these regions by baiting reads that overlap with the assembled regions until no gaps are left in between. Another mode of MITObim works without a reference mitogenome: it starts with a short COI sequence and extends by baiting reads with overlaps, till the N- and C-termini of the sequence can be mapped to the same reads, indicating that a circular mitogenome has been assembled (Hahn et al., 2013). Compared with the traditional PCR method, this method of mitogenome assembly does not require multiple primer designing and optimization, especially for species with limited knowledge available for primers' design.
However, MITObim could make mistakes due to (1) ambiguity in mapping and aligning the reads, (2) presence of sequencing error, and (3) difficulty in distinguishing mitochondrial DNA reads from nuclear DNA reads, especially those from nuclear copies of mitochondrial DNA or low-complexity regions. Therefore, taking the consensus of different MITObim runs with different modes and references, and careful validation of the result are needed. We produced a highly accurate assembly by integrating assemblies made by different MITObim modes (using other mitogenomes as references or the COI barcode sequence as seed). Even for the D-loop region that contains multiple short repeats, sequences obtained from Sanger sequencing showed no differences from our assembly.
Our phylogenetic analysis yielded a detailed tree of butterflies with available complete mitogenomes. Traditionally, Hesperiidae were considered to be at the root of the phylogenetic tree for all butterflies due to their similarity in morphology to moths (Kristensen and Skalski, 1998). However, several recent studies with molecular evidence have suggested a different evolutionary history of butterflies: (Papilionidae + (Hesperiidae + (Pieridae + (Nymphalidae + (Lycaenidae + Riodinidae))))) (Heikkila et al., 2012, Kim et al., 2014, Regier et al., 2013). Our phylogenetic analysis contained many more taxa compared with previous analyses and supported the same result in placing Papilionidae at the base. The reason for this apparent contradiction between the traditional morphology and recent molecular-based phylogeny is still poorly understood and requires future analysis.
It is notable that P. glaucus, a swallowtail native of eastern North America, is found to be confidently grouped with P. maraho based on our phylogeny analysis. P. maraho is a threatened swallowtail endemic to Taiwan in Asia (Baillie and Groombridge, 1996). Morphology, behavior and phylogenetic studies based on COI barcode suggested that P. maraho is very close to Papilio elwesi (Igarashi, 1979, Lu et al., 2009). Both P. elwesi and P. maraho are frequently attributed to the subgenus Agehana, which in some studies is included in subgenus Chilasa (Hancock, 1983, Zakharov et al., 2004). Despite a wide geographic separation, Agehana and Chilasa native to Asia are likely to be the closest relatives of the subgenus Pterourus (Zakharov et al., 2004), which is native to America. We speculate that these butterflies might have migrated between Asia (Agehana) and North America (Pterourus). Swallowtail butterflies have dispersed between continents (Condamine et al., 2012, Condamine et al., 2013). A recent report had found that Polyommatus blue butterflies traveled from Asia to North America via the Bering Strait, ultimately migrating to South America (Vila et al., 2011). Several other reports found that other butterfly species, animals, and plants followed the same route to the New World (Donoghue and Smith, 2004, Enghoff, 1995, Mullen, 2006, Peña et al., 2010).
Although our phylogenetic analyses produced similar phylogenetic trees, despite being performed with different methods, on different subsets of data (without or without RNA-coding sequences, DNA and translated proteins), and with different partition schemes, minor variations in positions of some taxa were observed. These inconsistencies might be caused by the available mitogenomes not carrying sufficient information to deduce accurate phylogeny, available software not being fully adequate for the task, or our position selection strategy requiring improvement. The current sample of taxa did not provide a fully resolved, consistent and accurate phylogeny. Additional analyses, mitogenomes, and possibly information from nuclear genomes are needed to address the question of the applicability of mitogenomes to infer a more accurate phylogenetic tree of butterflies.
The following are the supplementary data related to this article.
Acknowledgment
This work was supported by the National Institutes of Health (GM094575 to NVG) and the Welch Foundation (I-1505 to NVG). Qian Cong is a Howard Hughes Medical Institute International Student Research fellow. We acknowledge Texas Parks and Wildlife Department (Natural Resources Program Director David H. Riskind) for the permit #08-02Rev that makes our research in Texas State Parks possible. And we thank Lisa N. Kinch and Dustin Schaeffer for critical suggestions and corrections to the manuscript.
References
- Baillie J., Groombridge B. IUCN, Gland; Switzerland and Cambridge, UK: 1996. 1996 IUCN Red List of Threatened Animals. [Google Scholar]
- Benjamini Y., Speed T.P. Summarizing and correcting the GC content bias in high-throughput sequencing. Nucleic Acids Res. 2012;40:e72. doi: 10.1093/nar/gks001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bernt M., Donath A., Juhling F., Externbrink F., Florentz C., Fritzsch G., Putz J., Middendorf M., Stadler P.F. MITOS: improved de novo metazoan mitochondrial genome annotation. Mol. Phylogenet. Evol. 2013;69:313–319. doi: 10.1016/j.ympev.2012.08.023. [DOI] [PubMed] [Google Scholar]
- Boore J.L. Animal mitochondrial genomes. Nucleic Acids Res. 1999;27:1767–1780. doi: 10.1093/nar/27.8.1767. [DOI] [PMC free article] [PubMed] [Google Scholar]
- C.A. Bridges . C.A. Bridges; Urbana, IL: 1988. Catalogue of Papilionidae & Pieridae (Lepidoptera: Rhopalocera) [Google Scholar]
- Cally S., Lhuillier E., Iribar A., Garzon-Orduna I., Coissac E., Murienne J. Shotgun assembly of the complete mitochondrial genome of the neotropical cracker butterfly Hamadryas epinome. Mitochondrial DNA. 2014:1–3. doi: 10.3109/19401736.2014.971262. [DOI] [PubMed] [Google Scholar]
- Cameron S.L. Insect mitochondrial genomics: implications for evolution and phylogeny. Annu. Rev. Entomol. 2014;59:95–117. doi: 10.1146/annurev-ento-011613-162007. [DOI] [PubMed] [Google Scholar]
- Cao Y.Q., Ma C., Chen J.Y., Yang D.R. The complete mitochondrial genomes of two ghost moths, Thitarodes renzhiensis and Thitarodes yunnanensis: the ancestral gene arrangement in Lepidoptera. BMC Genomics. 2012;13:276. doi: 10.1186/1471-2164-13-276. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cao T.-W., Wang J.-P., Xuan S.-B., Zhang M., Guo Y.-P., Ma E.-B. Analysis of complete mitochondrial genome of Timelaea maculata (Lepidoptera, Nymphalida) Zool. Syst. 2013;38:468–475. [Google Scholar]
- Caterino M.S., Sperling F.A. Papilio phylogeny based on mitochondrial cytochrome oxidase I and II genes. Mol. Phylogenet. Evol. 1999;11:122–137. doi: 10.1006/mpev.1998.0549. [DOI] [PubMed] [Google Scholar]
- Chen M., Tian L.L., Shi Q.H., Cao T.W., Hao J.S. Complete mitogenome of the Lesser Purple Emperor Apatura ilia (Lepidoptera: Nymphalidae: Apaturinae) and comparison with other nymphalid butterflies. Dongwuxue Yanjiu. 2012;33:191–201. doi: 10.3724/SP.J.1141.2012.02191. [DOI] [PubMed] [Google Scholar]
- Chen Y.-h., Huang D.-y., Wang Y.-l., Zhu C.-d., Hao J.-s. The complete mitochondrial genome of the endangered Apollo butterfly, Parnassius apollo (Lepidoptera: Papilionidae) and its comparison to other Papilionidae species. J. Asia Pac. Entomol. 2014;17:663–671. [Google Scholar]
- Chen Y., Gan S., Shao L., Cheng C., Hao J. The complete mitochondrial genome of the Pazala timur (Lepidoptera: Papilionidae: Papilioninae) Mitochondrial DNA. 2014 doi: 10.3109/19401736.2014.905843. [DOI] [PubMed] [Google Scholar]
- Chen Y., Gan S., Wang Y., Wang Y., Zuo N., Hao J. The complete mitochondrial genome of the Byasa alcinous (Lepidoptera: Papilionidae: Papilioninae) Mitochondrial DNA. 2014:1–2. doi: 10.3109/19401736.2014.919472. [DOI] [PubMed] [Google Scholar]
- Chevreux B., Wetter T., Suhai S. Computer Science and Biology: Proceedings of the German Conference on Bioinformatics (GCB) 1999. Genome sequence assembly using trace signals and additional sequence information. [Google Scholar]
- Clarke C.A., Sheppard P.M. The genetics of the mimetic butterfly Papilio polytes L. Philos. Trans. R. Soc. B. 1972;263:431–458. doi: 10.1098/rstb.1972.0006. [DOI] [PubMed] [Google Scholar]
- Condamine F.L., Sperling F.A.H., Wahlberg N., Rasplus J.-Y., Kergoat G.J. What causes latitudinal gradients in species diversity? Evolutionary processes and ecological constraints on swallowtail biodiversity. Ecol. Lett. 2012;15:267–277. doi: 10.1111/j.1461-0248.2011.01737.x. [DOI] [PubMed] [Google Scholar]
- Condamine F.L., Sperling F.A.H., Kergoat G.J. Global biogeographical pattern of swallowtail diversification demonstrates alternative colonization routes in the Northern and Southern hemispheres. J. Biogeogr. 2013;40:9–23. [Google Scholar]
- Cong Q., Borek D., Otwinowski Z., Grishin Nick V. Tiger swallowtail genome reveals mechanisms for speciation and caterpillar chemical defense. Cell Rep. 2015;10 doi: 10.1016/j.celrep.2015.01.026. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Darriba D., Taboada G.L., Doallo R., Posada D. jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods. 2012;9:772. doi: 10.1038/nmeth.2109. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dong Y., Zhu L.X., Wu Y.F., Wu X.B. The complete mitochondrial genome of the Alpine black swallowtail, Papilio maackii (Insecta: Lepidoptera: Papilionidae) Mitochondrial DNA. 2013;24:639–641. doi: 10.3109/19401736.2013.772162. [DOI] [PubMed] [Google Scholar]
- Dong Y., Zhu L.X., Ding M.J., Wang J.J., Luo L.G., Liu Y., Ou Y.Y. Complete mitochondrial genome of Papilio syfanius (Lepidoptera: Papilionidae) Mitochondrial DNA. 2014 doi: 10.3109/19401736.2014.898278. [DOI] [PubMed] [Google Scholar]
- Donoghue M.J., Smith S.A. Patterns in the assembly of temperate forests around the Northern Hemisphere. Philos. Trans. R. Soc. B. 2004;359:1633–1644. doi: 10.1098/rstb.2004.1538. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Enghoff H. Historical biogeography of the holarctic: area relationships, ancestral areas, and dispersal of non-marine animals. Cladistics. 1995;11:223–263. [Google Scholar]
- Engsontia P., Sangket U., Chotigeat W., Satasook C. Molecular evolution of the odorant and gustatory receptor genes in lepidopteran insects: implications for their adaptation and speciation. J. Mol. Evol. 2014;79:21–39. doi: 10.1007/s00239-014-9633-0. [DOI] [PubMed] [Google Scholar]
- Gan, Sun X.Y., Gai Y.H., Hao J.S. The complete mitochondrial genome of Danaus chrysippus (Lepidoptera: Nymphalidae: Danainae) Mitochondrial DNA. 2014 doi: 10.3109/19401736.2013.855909. [DOI] [PubMed] [Google Scholar]
- Gan S., Chen Y., Zuo N., Zhang W., Hao J. The complete mitochondrial genome of Ideopsis similis (Lepidoptera: Nymphalidae: Danainae) Mitochondrial DNA. 2014 doi: 10.3109/19401736.2014.905842. [DOI] [PubMed] [Google Scholar]
- Gan S., Chen Y., Zuo N., Xia C., Hao J. The complete mitochondrial genome of Tirumala limniace (Lepidoptera: Nymphalidae: Danainae) Mitochondrial DNA. 2014:1–3. doi: 10.3109/19401736.2014.930839. [DOI] [PubMed] [Google Scholar]
- Gong Y.J., Wu Q.L., Wei S.J. The first complete mitogenome for the superfamily Cossoidea of Lepidoptera: the seabuckthorn carpenter moth Eogystia hippophaecolus. Mitochondrial DNA. 2014;25:288–289. doi: 10.3109/19401736.2013.792071. [DOI] [PubMed] [Google Scholar]
- Hahn C., Bachmann L., Chevreux B. Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads—a baiting and iterative mapping approach. Nucleic Acids Res. 2013;41:e129. doi: 10.1093/nar/gkt371. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hancock D.L. Classification of the Papilionidae (Lepidoptera): a phylogenetic approach. Smithersia. 1983;2:1–48. [Google Scholar]
- Hao J., Sun Q., Zhao H., Sun X., Gai Y., Yang Q. The complete mitochondrial genome of Ctenoptilum vasava (Lepidoptera: Hesperiidae: Pyrginae) and its phylogenetic implication. Comp. Funct. Genomics. 2012;2012:328049. doi: 10.1155/2012/328049. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hao J.J., Wang Y.L., Sun X.Y., Zhang L.L., Hao J.S., Yang Q. The complete mitochondrial genome of Hebomoia glaucippe (Lepidoptera: Pieridae) Mitochondrial DNA. 2013;24:668–670. doi: 10.3109/19401736.2013.773983. [DOI] [PubMed] [Google Scholar]
- Hao J., Sun M., Shi Q., Sun X., Shao L., Yang Q. Complete mitogenomes of Euploea mulciber (Nymphalidae: Danainae) and Libythea celtis (Nymphalidae: Libytheinae) and their phylogenetic implications. ISRN Genomics. 2013;2013:14. [Google Scholar]
- Hao J.J., Hao J.S., Sun X.Y., Zhang L.L., Yang Q. The complete mitochondrial genomes of the Fenton's wood white, Leptidea morsei, and the lemon emigrant, Catopsilia pomona. J. Insect Sci. 2014;14:130. doi: 10.1093/jis/14.1.130. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heikkila M., Kaila L., Mutanen M., Pena C., Wahlberg N. Cretaceous origin and repeated tertiary diversification of the redefined butterflies. Proc. Biol. Sci. R. Soc. 2012;279:1093–1099. doi: 10.1098/rspb.2011.1430. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heliconius Genome C. Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature. 2012;487:94–98. doi: 10.1038/nature11041. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hines H.M., Papa R., Ruiz M., Papanicolaou A., Wang C., Nijhout H.F., McMillan W.O., Reed R.D. Transcriptome analysis reveals novel patterning and pigmentation genes underlying Heliconius butterfly wing pattern variation. BMC Genomics. 2012;13:288. doi: 10.1186/1471-2164-13-288. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hong G., Jiang S., Yu M., Yang Y., Li F., Xue F., Wei Z. The complete nucleotide sequence of the mitochondrial genome of the cabbage butterfly, Artogeia melete (Lepidoptera: Pieridae) Acta Biochim. Biophys. Sin. 2009;41:446–455. doi: 10.1093/abbs/gmp030. [DOI] [PubMed] [Google Scholar]
- http://hannonlab.cshl.edu/fastx_toolkit/
- Hu J., Zhang D., Hao J., Huang D., Cameron S., Zhu C. The complete mitochondrial genome of the yellow coaster, Acraea issoria (Lepidoptera: Nymphalidae: Heliconiinae: Acraeini): sequence, gene organization and a unique tRNA translocation event. Mol. Biol. Rep. 2010;37:3431–3438. doi: 10.1007/s11033-009-9934-3. [DOI] [PubMed] [Google Scholar]
- Huang Z.H., Dai P.F., Zhao G.F. The complete mitochondrial genome of Heliconius pachinus (Insecta: Lepidoptera: Nymphalidae) Mitochondrial DNA. 2014:1–2. doi: 10.3109/19401736.2014.945542. [DOI] [PubMed] [Google Scholar]
- Huang D., Hao J., Zhang W., Su T., Wang Y., Xu X. The complete mitochondrial genome of Melanargia asiatica (Lepidoptera: Nymphalidae: Satyrinae) Mitochondrial DNA. 2014:1–3. doi: 10.3109/19401736.2014.919452. [DOI] [PubMed] [Google Scholar]
- Huelsenbeck J.P., Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 2001;17:754–755. doi: 10.1093/bioinformatics/17.8.754. [DOI] [PubMed] [Google Scholar]
- Igarashi S. Kodansha; Tokyo: 1979. Papilionidae and Their Early Stages. [Google Scholar]
- Ji L.-W., Hao J.-S., Wang Y., Huang D.-Y., Zhao J.-L., Zhu C.-D. The complete mitochondrial genome of the dragon swallowtail, Sericinus montela Gray (Lepidoptera: Papilionidae) and its phylogenetic implication. Acta Entomol. Sin. 2012;55:91–100. [Google Scholar]
- Katoh K., Standley D.M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kelley D.R., Schatz M.C., Salzberg S.L. Quake: quality-aware detection and correction of sequencing errors. Genome Biol. 2010;11:R116. doi: 10.1186/gb-2010-11-11-r116. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kim M.J., Kim I. Complete mitochondrial genome of the Mormon metalmark butterfly, Apodemia mormo (Lepidoptera: Riodinidae) Mitochondrial DNA. 2014:1–3. doi: 10.3109/19401736.2014.915539. [DOI] [PubMed] [Google Scholar]
- Kim I., Lee E.M., Seol K.Y., Yun E.Y., Lee Y.B., Hwang J.S., Jin B.R. The mitochondrial genome of the Korean hairstreak, Coreana raphaelis (Lepidoptera: Lycaenidae) Insect Mol. Biol. 2006;15:217–225. doi: 10.1111/j.1365-2583.2006.00630.x. [DOI] [PubMed] [Google Scholar]
- Kim M.I., Baek J.Y., Kim M.J., Jeong H.C., Kim K.G., Bae C.H., Han Y.S., Jin B.R., Kim I. Complete nucleotide sequence and organization of the mitogenome of the red-spotted apollo butterfly, Parnassius bremeri (Lepidoptera: Papilionidae) and comparison with other lepidopteran insects. Mol. Cells. 2009;28:347–363. doi: 10.1007/s10059-009-0129-5. [DOI] [PubMed] [Google Scholar]
- Kim M.J., Kim M.J., Wan X.l., Kim K.-G., Hwang J.S., Kim I. Complete nucleotide sequence and organization of the mitogenome of endangered Eumenis autonoe (Lepidoptera: Nymphalidae) Afr. J. Biotechnol. 2010;9:735–754. [Google Scholar]
- Kim M.J., Kang A.R., Jeong H.C., Kim K.G., Kim I. Reconstructing intraordinal relationships in Lepidoptera using mitochondrial genome data with the description of two newly sequenced lycaenids, Spindasis takanonis and Protantigius superans (Lepidoptera: Lycaenidae) Mol. Phylogenet. Evol. 2011;61:436–445. doi: 10.1016/j.ympev.2011.07.013. [DOI] [PubMed] [Google Scholar]
- Kim M.J., Jeong H.C., Kim S.R., Kim I. Complete mitochondrial genome of the nerippe fritillary butterfly, Argynnis nerippe (Lepidoptera: Nymphalidae) Mitochondrial DNA. 2011;22:86–88. doi: 10.3109/19401736.2011.624604. [DOI] [PubMed] [Google Scholar]
- Kim M.J., Wang A.R., Park J.S., Kim I. Complete mitochondrial genomes of five skippers (Lepidoptera: Hesperiidae) and phylogenetic reconstruction of Lepidoptera. Gene. 2014;549:97–112. doi: 10.1016/j.gene.2014.07.052. [DOI] [PubMed] [Google Scholar]
- Kristensen N.P., Skalski A.W. Handbuch der Zoologie/Handbook of Zoology. Walter de Gruyter GmbH & Co.; Berlin, Germany: 1998. Phylogeny and palaeontology; pp. 7–25. [Google Scholar]
- Kristensen N.P., Scoble M.J., Karsholt O. Lepidoptera phylogeny and systematics: the state of inventorying moth and butterfly diversity. Zootaxa. 2007;1668:699–747. [Google Scholar]
- Langmead B., Salzberg S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods. 2012;9:357–359. doi: 10.1038/nmeth.1923. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., Durbin R., Genome Project Data Processing S. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–2079. doi: 10.1093/bioinformatics/btp352. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lian-Xi X., Peng-Fei L., Jia W., Kai W., Ping Y. The complete mitochondrial genome of the endangered butterfly Luehdorfia taibai Chou (Lepidoptera: Papilionidae) Mitochondrial DNA. 2014;25:122–123. doi: 10.3109/19401736.2013.800506. [DOI] [PubMed] [Google Scholar]
- Lu C.-C., Wu L.-W., Jiang G.-F., Deng H.-L., Wang L.-H., Yang P.-S., Hsu Y.-F. Systematic status of Agehana elwesi f. cavaleriei based on morphological and molecular evidence. Zool. Stud. 2009;48:270–279. [Google Scholar]
- Lu H.F., Su T.J., Luo A.R., Zhu C.D., Wu C.S. Characterization of the complete mitochondrion genome of diurnal moth Amata emma (Butler) (Lepidoptera: Erebidae) and its phylogenetic implications. PLoS One. 2013;8:e72410. doi: 10.1371/journal.pone.0072410. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mao Z.-H., Hao J.-S., Zhu G.-P., Hu J., Si M.-M., Zhu C.-D. Sequencing and analysis of the complete mitochondrial genome of Pieris rapae Linnaeus (Lepidoptera: Pieridae) Acta Entomol. Sin. 2010;53:1295–1304. [Google Scholar]
- Margam V.M., Coates B.S., Hellmich R.L., Agunbiade T., Seufferheld M.J., Sun W., Ba M.N., Sanon A., Binso-Dabire C.L., Baoua I., Ishiyaku M.F., Covas F.G., Srinivasan R., Armstrong J., Murdock L.L., Pittendrigh B.R. Mitochondrial genome sequence and expression profiling for the legume pod borer Maruca vitrata (Lepidoptera: Crambidae) PLoS One. 2011;6:e16444. doi: 10.1371/journal.pone.0016444. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meng Z., Lei C., Chen X., Jiang S. Complete mitochondrial genome sequence of Heliconius melpomene rosina (Insecta: Lepidoptera: Nymphalidae) Mitochondrial DNA. 2014:1–2. doi: 10.3109/19401736.2014.987261. [DOI] [PubMed] [Google Scholar]
- Moritz C., Dowling T.E., Brown W.M. Evolution of animal mitochondrial-DNA — relevance for population biology and systematics. Annu. Rev. Ecol. Syst. 1987;18:269–292. [Google Scholar]
- Mullen S.P. Wing pattern evolution and the origins of mimicry among North American admiral butterflies (Nymphalidae: Limenitis) Mol. Phylogenet. Evol. 2006;39:747–758. doi: 10.1016/j.ympev.2006.01.021. [DOI] [PubMed] [Google Scholar]
- Nishikawa H., Iga M., Yamaguchi J., Saito K., Kataoka H., Suzuki Y., Sugano S., Fujiwara H. Molecular basis of wing coloration in a Batesian mimic butterfly, Papilio polytes. Sci. Rep. 2013;3 doi: 10.1038/srep03184. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ojala D., Montoya J., Attardi G. tRNA punctuation model of RNA processing in human mitochondria. Nature. 1981;290:470–474. doi: 10.1038/290470a0. [DOI] [PubMed] [Google Scholar]
- Park J.S., Cho Y., Kim M.J., Nam S.-H., Kim I. Description of complete mitochondrial genome of the black-veined white, Aporia crataegi (Lepidoptera: Papilionoidea), and comparison to papilionoid species. J. Asia Pac. Entomol. 2012;15:331–341. [Google Scholar]
- Peña C., Nylin S., Freitas A.V.L., Wahlberg N. Biogeographic history of the butterfly subtribe Euptychiina (Lepidoptera, Nymphalidae, Satyrinae) Zool. Scr. 2010;39:243–258. [Google Scholar]
- Perna N.T., Kocher T.D. Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J. Mol. Evol. 1995;41:353–358. doi: 10.1007/BF00186547. [DOI] [PubMed] [Google Scholar]
- Qian Z.Q. The complete mitogenome of the Cydno Longwing Heliconius cydno (Insecta: Lepidoptera: Nymphalidae) Mitochondrial DNA. 2014:1–2. doi: 10.3109/19401736.2014.953089. [DOI] [PubMed] [Google Scholar]
- Qin F., Jiang G.F., Zhou S.Y. Complete mitochondrial genome of the Teinopalpus aureus guangxiensis (Lepidoptera: Papilionidae) and related phylogenetic analyses. Mitochondrial DNA. 2012;23:123–125. doi: 10.3109/19401736.2011.653805. [DOI] [PubMed] [Google Scholar]
- Qin X.M., Guan Q.X., Zeng D.L., Qin F., Li H.M. Complete mitochondrial genome of Kallima inachus (Lepidoptera: Nymphalidae: Nymphalinae): comparison of K. inachus and Argynnis hyperbius. Mitochondrial DNA. 2012;23:318–320. doi: 10.3109/19401736.2012.684093. [DOI] [PubMed] [Google Scholar]
- Quinlan A.R., Hall I.M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26:841–842. doi: 10.1093/bioinformatics/btq033. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Regier J.C., Mitter C., Zwick A., Bazinet A.L., Cummings M.P., Kawahara A.Y., Sohn J.C., Zwickl D.J., Cho S., Davis D.R., Baixeras J., Brown J., Parr C., Weller S., Lees D.C., Mitter K.T. A large-scale, higher-level, molecular phylogenetic study of the insect order Lepidoptera (moths and butterflies) PLoS One. 2013;8:e58568. doi: 10.1371/journal.pone.0058568. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robinson J.T., Thorvaldsdottir H., Winckler W., Guttman M., Lander E.S., Getz G., Mesirov J.P. Integrative genomics viewer. Nat. Biotechnol. 2011;29:24–26. doi: 10.1038/nbt.1754. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Salvato P., Simonato M., Battisti A., Negrisolo E. The complete mitochondrial genome of the bag-shelter moth Ochrogaster lunifer (Lepidoptera, Notodontidae) BMC Genomics. 2008;9:331. doi: 10.1186/1471-2164-9-331. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Servin-Garciduenas L.E., Martinez-Romero E. Complete mitochondrial genome recovered from the gut metagenome of overwintering monarch butterflies, Danaus plexippus (L.) (Lepidoptera: Nymphalidae, Danainae) Mitochondrial DNA. 2014;25:427–428. doi: 10.3109/19401736.2013.809441. [DOI] [PubMed] [Google Scholar]
- Shen Q.Q., Wang L. The complete mitochondrial genome sequence of Heliconius hecale (Insecta: Lepidoptera: Nymphalidae) Mitochondrial DNA. 2014:1–2. doi: 10.3109/19401736.2014.945561. [DOI] [PubMed] [Google Scholar]
- Shi Q.H., Xia J., Sun X.Y., Hao J.S., Yang Q. Complete mitogenome of the Painted Jezebel, Delias hyparete Linnaeus (Lepidoptera: Pieridae) and its comparison with other butterfly species. Dongwuxue Yanjiu. 2012;33:E111–E120. doi: 10.3724/SP.J.1141.2012.E05-06E111. [DOI] [PubMed] [Google Scholar]
- Shi Q., Huang D., Wang Y., Hao J. The complete mitochondrial genome of Blue Pansy, Junonia orithya (Lepidoptera: Nymphalidae: Nymphalinae) Mitochondrial DNA. 2013;26(2):245–246. doi: 10.3109/19401736.2013.823182. [DOI] [PubMed] [Google Scholar]
- Shi Q.H., Zhao F., Hao J.S., Yang Q. Complete mitochondrial genome of the common evening brown, Melanitis leda Linnaeus (Lepidoptera: Nymphalidae: Satyrinae) Mitochondrial DNA. 2013;24:492–494. doi: 10.3109/19401736.2013.770501. [DOI] [PubMed] [Google Scholar]
- Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006;22:2688–2690. doi: 10.1093/bioinformatics/btl446. [DOI] [PubMed] [Google Scholar]
- Sun X., Shao L., Peng C., Hao J., Yang Q. The complete mitochondrial genome of Eurema hecabe (Lepidoptera: Pieridae: Coliadinae) Mitochondrial DNA. 2014 doi: 10.3109/19401736.2013.855751. [DOI] [PubMed] [Google Scholar]
- Surridge A.K., Lopez-Gomollon S., Moxon S., Maroja L.S., Rathjen T., Nadeau N.J., Dalmay T., Jiggins C.D. Characterisation and expression of microRNAs in developing wings of the neotropical butterfly Heliconius melpomene. BMC Genomics. 2011;12:62. doi: 10.1186/1471-2164-12-62. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Teixeira da Costa L.F. The complete mitochondrial genome of Parage aegeria (Insecta: Lepidoptera: Papilionidae) Mitochondrial DNA. 2014 doi: 10.3109/19401736.2014.905853. [DOI] [PubMed] [Google Scholar]
- Tian L.L., Sun X.Y., Chen M., Gai Y.H., Hao J.S., Yang Q. Complete mitochondrial genome of the five-dot sergeant Parathyma sulpitia (Nymphalidae: Limenitidinae) and its phylogenetic implications. Dongwuxue Yanjiu. 2012;33:133–143. doi: 10.3724/SP.J.1141.2012.02133. [DOI] [PubMed] [Google Scholar]
- Vila R., Bell C.D., Macniven R., Goldman-Huertas B., Ree R.H., Marshall C.R., Bálint Z., Johnson K., Benyamini D., Pierce N.E. Phylogeny and palaeoecology of Polyommatus blue butterflies show Beringia was a climate-regulated gateway to the New World. Proc. R. Soc. Lond. B Biol. Sci. 2011;278(1719):2737–2744. doi: 10.1098/rspb.2010.2213. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang X.C., Sun X.Y., Sun Q.Q., Zhang D.X., Hu J., Yang Q., Hao J.S. Complete mitochondrial genome of the laced fritillary Argyreus hyperbius (Lepidoptera: Nymphalidae) Dongwuxue Yanjiu. 2011;32:465–475. doi: 10.3724/SP.J.1141.2011.05465. [DOI] [PubMed] [Google Scholar]
- Wang J.-P., Nie X.-P., Cao T.-W., Zhang M., Guo Y.-P., Ma E.-B., Zhang X.-N. Analysis of complete mitochondrial genome of Sasakia charonda coreana (Lepidoptera, Nymphalida) Zool. Syst. 2012;37:1–9. [Google Scholar]
- Wang K., Hao J., Zhao H. Characterization of complete mitochondrial genome of the skipper butterfly, Celaenorrhinus maculosus (Lepidoptera: Hesperiidae) Mitochondrial DNA. 2013 doi: 10.3109/19401736.2013.840610. [DOI] [PubMed] [Google Scholar]
- Wang J.P., Cao T.W., Xuan S.B., Wang H., Zhang M., Ma E. The complete mitochondrial genome of Sasakia funebris (Leech) (Lepidoptera: Nymphalidae) and comparison with other Apaturinae insects. Gene. 2013;526:277–283. doi: 10.1016/j.gene.2013.05.036. [DOI] [PubMed] [Google Scholar]
- Wang L., Du X.J., Li X.F. The complete mitogenome of the common Mormon Papilio polytes (Insecta: Lepidoptera: Papilionoidea) Mitochondrial DNA. 2014:1–2. doi: 10.3109/19401736.2014.945550. [DOI] [PubMed] [Google Scholar]
- Wang Y., Chen Y., Xia C., Xia X., Chen X., Hao J. The complete mitochondrial genome of Parnassius imperator (Lepidoptera: Papilionidae: Parnassiinae) Mitochondrial DNA. 2014:1–2. doi: 10.3109/19401736.2014.971277. [DOI] [PubMed] [Google Scholar]
- Wang A.R., Jeong H.C., Han Y.S., Kim I. The complete mitochondrial genome of the mountainous duskywing, Erynnis montanus (Lepidoptera: Hesperiidae): a new gene arrangement in Lepidoptera. Mitochondrial DNA. 2014;25:93–94. doi: 10.3109/19401736.2013.784752. [DOI] [PubMed] [Google Scholar]
- Wu L.W., Lin L.H., Lees D.C., Hsu Y.F. Mitogenomic sequences effectively recover relationships within brush-footed butterflies (Lepidoptera: Nymphalidae) BMC Genomics. 2014;15:468. doi: 10.1186/1471-2164-15-468. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xia J., Hu J., Zhu G.-P., Zhu C.-D., Hao J.-S. Sequencing and analysis of the complete mitochondrial genome of Calinaga davidis Oberthur (Lepidoptera: Nymphalidae) Acta Entomol. Sin. 2011;54:555–565. [Google Scholar]
- Zakharov E.V., Caterino M.S., Sperling F.A. Molecular phylogeny, historical biogeography, and divergence time estimates for swallowtail butterflies of the genus Papilio (Lepidoptera: Papilionidae) Syst. Biol. 2004;53:193–215. doi: 10.1080/10635150490423403. [DOI] [PubMed] [Google Scholar]
- Zhan S., Merlin C., Boore J.L., Reppert S.M. The monarch butterfly genome yields insights into long-distance migration. Cell. 2011;147:1171–1185. doi: 10.1016/j.cell.2011.09.052. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhan S., Zhang W., Niitepold K., Hsu J., Haeger J.F., Zalucki M.P., Altizer S., de Roode J.C., Reppert S.M., Kronforst M.R. The genetics of monarch butterfly migration and warning colouration. Nature. 2014;514:317–321. doi: 10.1038/nature13812. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang M., Nie X., Cao T., Wang J., Li T., Zhang X., Guo Y., Ma E., Zhong Y. The complete mitochondrial genome of the butterfly Apatura metis (Lepidoptera: Nymphalidae) Mol. Biol. Rep. 2012;39:6529–6536. doi: 10.1007/s11033-012-1481-7. [DOI] [PubMed] [Google Scholar]
- Zhang W., Kunte K., Kronforst M.R. Genome-wide characterization of adaptation and speciation in tiger swallowtail butterflies using de novo transcriptome assemblies. Genome Biol. Evol. 2013;5:1233–1245. doi: 10.1093/gbe/evt090. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang L., Huang D., Sun X., Hao J., Hao J., Peng C., Yang Q. The complete mitochondrial genome of Cupido argiades (Lepidoptera: Lycaenidae) Mitochondrial DNA. 2013;24:475–477. doi: 10.3109/19401736.2013.770495. [DOI] [PubMed] [Google Scholar]
- Zhang L.L., Hao J.S., Huang D.Y., Sun X.Y., Hao J.J., Peng C.M., Yang Q. Complete mitochondrial genomes of the bright sunbeam Curetis bulis and the small copper Lycaena phlaeas (Lepidoptera: Lycaenidae) and their phylogenetic implications. Genet. Mol. Res. 2013;12:4434–4445. doi: 10.4238/2013.October.10.9. [DOI] [PubMed] [Google Scholar]
- Zhang W., Gan S., Zuo N., Chen C., Wang Y., Hao J. The complete mitochondrial genome of Triphysa phryne (Lepidoptera: Nymphalidae: Satyrinae) Mitochondrial DNA. 2014 doi: 10.3109/19401736.2014.900673. [DOI] [PubMed] [Google Scholar]
- Zhang H., Li F., Zhu X., Meng Z. The complete mitochondrial genome of Bombyx mori strain Baiyun (Lepidoptera: Bombycidae) Mitochondrial DNA. 2014:1–2. doi: 10.3109/19401736.2014.958713. [DOI] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.