Skip to main content
Frontiers in Neuroscience logoLink to Frontiers in Neuroscience
. 2015 Jul 3;9:225. doi: 10.3389/fnins.2015.00225

Brain “fog,” inflammation and obesity: key aspects of neuropsychiatric disorders improved by luteolin

Theoharis C Theoharides 1,2,3,4,*, Julia M Stewart 1, Erifili Hatziagelaki 5, Gerasimos Kolaitis 6
PMCID: PMC4490655  PMID: 26190965

Abstract

Brain “fog” is a constellation of symptoms that include reduced cognition, inability to concentrate and multitask, as well as loss of short and long term memory. Brain “fog” characterizes patients with autism spectrum disorders (ASDs), celiac disease, chronic fatigue syndrome, fibromyalgia, mastocytosis, and postural tachycardia syndrome (POTS), as well as “minimal cognitive impairment,” an early clinical presentation of Alzheimer's disease (AD), and other neuropsychiatric disorders. Brain “fog” may be due to inflammatory molecules, including adipocytokines and histamine released from mast cells (MCs) further stimulating microglia activation, and causing focal brain inflammation. Recent reviews have described the potential use of natural flavonoids for the treatment of neuropsychiatric and neurodegenerative diseases. The flavone luteolin has numerous useful actions that include: anti-oxidant, anti-inflammatory, microglia inhibition, neuroprotection, and memory increase. A liposomal luteolin formulation in olive fruit extract improved attention in children with ASDs and brain “fog” in mastocytosis patients. Methylated luteolin analogs with increased activity and better bioavailability could be developed into effective treatments for neuropsychiatric disorders and brain “fog.”

Keywords: brain, cognition, cytokines, fog, histamine, inflammation, luteolin, mast cells

Introduction

Brain “fog” is a constellation of symptoms that include reduced mental acuity and cognition, inability to concentrate and multitask, as well as loss of short and long-term memory. Brain “fog” characterizes patients with many neuroimmune diseases (Theoharides, 2013a) with celiac disease (Lebwohl and Ludvigsson, 2014; Lichtwark et al., 2014) chronic fatigue syndrome (Ocon, 2013), fibromyalgia and tachycardia postural syndrome (POTS) (Ross et al., 2013), as well as those with autism spectrum disorders (ASDs) and “minimal cognitive impairment,” which is now considered the early clinical presentation of Alzheimer's disease (AD) (Drzezga et al., 2011). Moreover, patients on chemotherapy often experience brain “fog” (Raffa, 2011).

Brain “fog” is particularly common in patients with systemic mastocytosis (SM) (Theoharides et al., 2015c) or disorders of mast cell (MC) activation (Valent et al., 2012; Petra et al., 2014). A recent survey of the symptoms experienced by patients with MC disorders reported that >90% of them experienced moderate to severe brain “fog” almost daily (Moura et al., 2012) and cognitive impairment was confirmed using a validated instrument (Moura et al., 2012). Patients with MC disorders also experience other related neurologic (Smith et al., 2011) and psychiatric (Moura et al., 2014) symptoms. It is interesting that children with mastocytosis were reported to have increased risk of developing ASDs compared to the general population (Theoharides, 2009). Children with ASDs are also characterized by brain “fog” (Rossignol and Frye, 2012) and focal brain inflammation (Theoharides et al., 2013) with MC activation being implicated in their pathogenesis (Theoharides et al., 2012a; Theoharides, 2013b).

Even though AD has typically been associated with brain senile plaques and neurofibrillary tangles that involve amyloid-β (Aβ) and tau proteins (Heneka et al., 2015), recent evidence indicates that oxidative stress/mitochondrial dysfunction (Zhu et al., 2012) and inflammation (Tan and Seshadri, 2010; Pizza et al., 2011; Heneka et al., 2015), are possibly involved in AD. In fact the immune system and inflammation are increasingly implicated in neuropsychiatric diseases (Kerr et al., 2005; Schmidt et al., 2007; Hamdani et al., 2013; Jones and Thomsen, 2013; Munkholm et al., 2013).

Pathogenesis/focal inflammation

Inflammatory molecules, secreted in the brain could contribute to the pathogenesis of such diseases (Theoharides et al., 2004b) possibly including brain “fog.” Brain expression of pro-inflammatory genes was increased in the brains of deceased patients with neuropsychiatric diseases (Theoharides et al., 2011b).

It is still not clear what triggers brain inflammation. Mounting evidence suggests that stress (Theoharides et al., 2011b) and exposure to mold (Crago et al., 2003; Shoemaker and House, 2006; Reinhard et al., 2007; Shenassa et al., 2007; Empting, 2009), especially airborne mycotoxins (Rea et al., 2003; Gordon et al., 2004; Kilburn, 2009; Brewer et al., 2013), may be involved. It is interesting that mold can potentiate histamine release from MCs (Larsen et al., 1996).

In fact, cross-talk between MCs and microglia is being considered critical in the pathogenesis of neurodegenerative diseases (Skaper et al., 2012, 2013) (Figure 1). Microglia activation is a common finding in brains of children with ASDs (Pardo et al., 2005; Sandoval-Cruz et al., 2011; Gupta et al., 2014), as well as in other psychiatric diseases (Beumer et al., 2012). Activation of microglia directly or indirectly by corticotropin-releasing hormone (CRH) could contribute to the pathogenesis of mental disorders (Kritas et al., 2014b).

Figure 1.

Figure 1

Schematic representation of the cross-talk between mast cells, microglia, and neurons.

Obesity

Obesity has been associated with neuropsychiatric disorders (Severance et al., 2012; Byrne et al., 2015). Adipocytokines are involved in neuroinflammation (Aguilar-Valles et al., 2015) and possibly in dementia (Arnoldussen et al., 2014; Kiliaan et al., 2014) including AD (Mathew et al., 2011; Khemka et al., 2014).

MCs have been implicated in obesity (Theoharides et al., 2011a), obesity-related asthma (Sismanopoulos et al., 2013) and in cardiovascular disease (CAD) (Alevizos et al., 2013; Chrostowska et al., 2013), which involves local inflammation (Libby et al., 2002; Matusik et al., 2012; Spinas et al., 2014). Both MCs (Kovanen et al., 1995; Laine et al., 1999) and histamine (Sakata et al., 1996) have been reported to be increased in atherosclerotic coronary plaques (Theoharides et al., 2011a). MC-derived histamine is a coronary constrictor. MC-derived IL-6 and TNF are independent risk factors for CAD (Libby et al., 2002) and can be released from MCs under stress (Huang et al., 2003), which can precipitate myocardial infarction (Alevizos et al., 2013). Obesity leads to endothelial dysfunction and chronic inflammation (Iantorno et al., 2014), also associated with the metabolic syndrome (Sun et al., 2015).

Role of mast cells

MCs derive from bone marrow progenitors, mature in tissues depending on microenvironmental conditions and are critical for the development of allergic reactions, but also immunity (Galli et al., 2008b; Theoharides et al., 2010a; Sismanopoulos et al., 2012), neuroinflammation (Theoharides and Cochrane, 2004; Theoharides et al., 2010a; Skaper et al., 2012), and mitochondrial health (Theoharides et al., 2011b; Zhang et al., 2011). MCs can produce both pro- and anti-inflammatory mediators rendering capable to exert immuno-modulatory functions (Galli et al., 2008a; Kalesnikoff and Galli, 2008).

MCs are present in the brain where they regulate blood-brain barrier (BBB) permeability (Theoharides, 1990) and brain function (Nautiyal et al., 2008). MCs are located adjacent to CRH-positive neurons in the rat median eminence (Theoharides et al., 1995) and regulate the HPA axis (Theoharides et al., 2004a; Theoharides and Konstantinidou, 2007).

In addition to IgE and antigen (Blank and Rivera, 2004), MCs are activated by substance P (SP) (Zhang et al., 2011), neurotensin (NT) (Donelan et al., 2006), and nerve growth factor (NGF) (Kritas et al., 2014a). In fact, allergic MC stimulation leads to secretion of Hemokin 1, which acts in an autocrine manner through MC NK1 receptors to augment IgE-mediated allergic responses (Sumpter et al., 2015). MC stimulation by SP is augmented by IL-33 (Theoharides et al., 2010b), which has been considered an “alarmin” acting through MCs to alert the innate immune system (Moussion et al., 2008; Enoksson et al., 2011). IL-33 has been linked to autoimmune and inflammatory diseases (Theoharides et al., 2015c), especially brain inflammation (Chakraborty et al., 2010) and recently AD pathogenesis (Xiong et al., 2014). Antigen can also act synergistically with toll-like receptors (TLR-2 and TLR-4) to produce MC cytokines (Qiao et al., 2006) and regulate responses to pathogens (Abraham and St John, 2010; Theoharides, 2015).

Once activated, MCs secrete numerous vasoactive, neurosensitizing and pro-inflammatory mediators (Theoharides et al., 2015a). These include preformed histamine, serotonin, kinins, proteases and tumor necrosis factor (TNF), as well as newly synthesized, leukotrienes, prostaglandins, chemokines (CCXL8, CCL2), cytokines (IL-4, IL-6, IL-1, TNF) and vascular endothelial growth factor (VEGF), which increase BBB permeability (Theoharides et al., 2008). MCs store pre-formed TNF in secretory granules from which it is released rapidly (Zhang et al., 2012b) and stimulates activated T cells (Nakae et al., 2006; Kempuraj et al., 2008).

MCs can release some mediators, such as IL-6, selectively without degranulation (Theoharides et al., 2007). In addition, CRH can stimulate selective release of VEGF (Cao et al., 2005) and IL-1 can stimulate selective release of IL-6 (Kandere-Grzybowska et al., 2003), which could affect brain function (Theoharides et al., 2004a) and activate the HPA axis (Kalogeromitros et al., 2007). MC-derived IL-6 along with TGFβ stimulate development of Th-17 cells (Nakae et al., 2007) and MCs, themselves secrete IL-17 (Nakae et al., 2007), which is involved in autoimmunity. Levels of IL-6 were increased in the cerebrospinal fluid (CSF) (Li et al., 2009b) and plasma (Yang et al., 2015) of patients with ASDs. MCs can therefore participate in neuroinflammation (Theoharides and Cochrane, 2004; Zhang et al., 2012a; Dong et al., 2014), especially autism (Theoharides et al., 2012a, 2015b; Theoharides, 2013b).

Maternal administration of the viral substitute poly (I:C) produced autism-like behavior in mice that was dependent on IL-6 (Hsiao et al., 2012) and was absent in IL-6 knock-out mice (Smith et al., 2007). We had shown that acute immobilization stress significantly increased serum IL-6 and this was absent in MC deficient mice (Huang et al., 2003). It was recently reported that plasma IL-6 was significantly increased after social stress, especially in mice that developed a phenotype susceptible to stress, while IL-6−∕− mice were resilient to social stress (Hodes et al., 2014).

MCs can secrete the content of individual granules (Theoharides and Douglas, 1978), and biogenic amines such as serotonin selectively without degranulation (Theoharides et al., 1982). MCs can communicate with neurons by transgranulation (Wilhelm et al., 2005). It was recently shown that MCs can undergo “polarized” exocytosis of proteolytic enzymes is what has been termed “antibody-dependent degranulation synapse” (Joulia et al., 2015). MCs can also secrete phospholipid nanovesicles (exosomes) (Skokos et al., 2002) that could cary a number of biologically active molecules (Shefler et al., 2011), in a manner guided by surface antigens (Bryniarski et al., 2013). Such exosomes could participate in neuropsychiatric diseases (Tsilioni et al., 2014; Kawikova and Askenase, 2015). In fact, individual MCs have been shown to exhibit “circadian clock” reactivity (Molyva et al., 2014; Nakao et al., 2015).

Histamine

MCs are located perivascularly in close proximity to brain neurons especially in the leptomeninges (Rozniecki et al., 1999a) and hypothalamus (Pang et al., 1996) where they contain most of the brain histamine (Alstadhaug, 2014). Increasing evidence indicates that brain histamine is involved in the pathogenesis of neuropsychiatric diseases (Haas et al., 2008; Shan et al., 2015) and the disruption of the BBB (Banuelos-Cabrera et al., 2014), through MC activation (Esposito et al., 2001, 2002; McKittrick et al., 2015). Histamine may be important for alertness and motivation (Zlomuzica et al., 2008; Torrealba et al., 2012), as well as cognition, learning and memory (Kamei and Tasaka, 1993; Alvarez et al., 2001; Rizk et al., 2004; da Silveira et al., 2013). For instancee, there was enhanced spatial learning and memory in histamine 3 (H3) receptor mice−∕− (Rizk et al., 2004). Moreover, antagonism of the autoinhibitory H3 receptor improved memory retention (Orsetti et al., 2001). In fact, H3 antagonists are being considered for the treatment of cognitive disorders and AD (Brioni et al., 2011).

It appears that some histamine is necessary for alertness, learning and motivation, but too much histamine shuts the system down, in MCs and histaminergic neurons, by activating H3 autoinhibitory receptors leading to brain “fog” (Table 1).

Table 1.

Effect of histamine on brain function.

Histamine Source Mechanism Cognition-learning-attention, motivation Brain fog, Anxiety
Low Increased diamine oxidase activity Activation of H3 autoinhibitory receptors shuts down histamine synthesis and release ++ N/A
Normal +++ N/A
High Mast cell secretion, histamine containing foods, gut bacterial histamine production Excessive use of H1 receptor antagonists + +++

Brain histamine can be increased by triggers of brain MCs, by histamine-containing foods (Bodmer et al., 1999; Maintz and Novak, 2007; Schwelberger, 2010; Prester, 2011), histamine produced by bacteria (Landete et al., 2008), or overuse of H1 receptor antagonists that would shift histamine binding from H1 to H3 receptors leading to autoinhibition of histamine synthesis and release (Table 1). In fact, we had shown that in rats at least only brain MCs express functional H3 receptors (Rozniecki et al., 1999b), as evidenced by the fact that an H3 receptor agonist inhibited while at H3 receptor antagonist augmented histamine and serotonin release only from brain, but not peritoneal MCs.

Beneficial effect of luteolin

Recent reviews have discussed the potential use of flavonoids for the treatment of neuropsychiatric (Jager and Saaby, 2011; Grosso et al., 2013) and neurodegenerative (Jones et al., 2012; Solanki et al., 2015) diseases including AD (Sheikh et al., 2012; Baptista et al., 2014; Mecocci et al., 2014; Vauzour, 2014).

Flavonoids (Figure 2) are naturally occurring compounds mostly found in green plants and seeds (Middleton et al., 2000). Unfortunately, our modern life diet contains progressively fewer flavonoids and under these conditions, the average person cannot consume enough to make a positive impact on health. Moreover, less than 10% of orally ingested flavonoids are absorbed (Passamonti et al., 2009; Thilakarathna and Rupasinghe, 2013) and are extensively metabolized to inactive ingredients in the liver (Chen et al., 2014).

Figure 2.

Figure 2

structures of (A) Flavone and (B) Luteolin.

Luteolin (5,7-3′5′-tetrahydroxyflavone) has potent antioxidant, anti-inflammatory (Middleton et al., 2000) and MC inhibitory activities (Kimata et al., 2000; Kempuraj et al., 2005; Asadi et al., 2010) and also inhibits auto-immune T cell activation (Verbeek et al., 2004; Kempuraj et al., 2008) (Table 2). Luteolin also inhibits microglial IL-6 release (Jang et al., 2008), microglial activation and proliferation (Chen et al., 2008; Dirscherl et al., 2010; Kao et al., 2011), as well as microglia-induced neuron apoptosis (Zhu et al., 2011).

Table 2.

Properties of the luteolin formulation.

LUTEOLIN
Reduces oxidative stress
Inhibits inflammation
Inhibits mast cell activation
Inhibits microglia activation
Reduces LDL oxidation
Inhibits neurotoxicity
Memory
Mimics BDNF
Inhibits acetylcholinesterase
Prevents autism-like behavior in mice
Improves attention and sociability in children with ASDs
OLIVE FRUIT EXTRACT
Olive oil increases spatial memory
Hydroxytyrosol increases short-term memory
Oleocanthal inhibits amyloid-induced neurotoxicity

A methylated luteolin analog (6-Methoxyluteolin) was shown to inhibit IgE-stimulated histamine release from human basophilic KU812F (Shim et al., 2012). Moreover, we recently showed that tetramethoxyluteolin is more potent inhibitor of human cultured MCs than luteolin (Weng et al., 2014).

Luteolin is protective against methylmercury-induced mitochondrial damage (Franco et al., 2010), as well as mercury and mitochondrial DNA-triggering of MCs (Asadi et al., 2010).

Luteolin improved spatial memory in a scopolamine-induced model (Yoo et al., 2013) and in amyloid β-peptide-induced toxicity (Liu et al., 2009) in rats. Luteolin was also shown to induce the synthesis and secretion of neurotrophic factors in cultured rat astrocytes (Xu et al., 2013). The related flavonoid 7,8-dihydroxyflavone mimicked the activity of brain-derived neurotrophic factor (BDNF) (Jang et al., 2010b). Moreover, the related flavonoids 4′-methoxyflavone and 3′,4′-dimethoxyflavone were shown to be neuroprotective (Fatokun et al., 2013). Luteolin also protected again cognitive dysfunction induced by chronic cerebral hypoperfusion is rats (Hagedorn et al., 2010; Fu et al., 2014) and high fat-diet-induced cognitive dysfunction in mice (Liu et al., 2014). Furthermore, luteolin (Liu et al., 2009; Jang et al., 2010a; Yoo et al., 2013) increased memory and inhibited autism-like behavior in a mouse model of autism (Parker-Athill et al., 2009). The luteolin structurally related flavonol quercetin protected against amyloid β-induced neurotoxicity (Liu et al., 2013; Regitz et al., 2014) and improved cognition in a mouse model of AD (Wang et al., 2014). In fact, quercetin-o-glucuronide reduced the generation of β-amyloid in primary cultured neurons (Ho et al., 2013).

A luteolin containing formulation significantly improved attention and behavior in children with autism (Theoharides et al., 2012b; Taliou et al., 2013). This dietary supplement contains luteolin (100 mg per softgel capsule, >98% pure) formulated in olive fruit extract (<0.001 oleic acid acidity and water content), which increases oral absorption.

Olive fruit extract contains hydroxytyrosol, which has been reported to protect against brain hypoxia (Gonzalez-Correa et al., 2008) and oleocanthal, which inhibits fibrilization of tau proteins (Li et al., 2009a) and reduces aggregation of Aβ oligomers (Pitt et al., 2009) implicated in AD. Moreover, olive oil (Mohagheghi et al., 2010) and olive leaf extract (Mohagheghi et al., 2011) reduced BBB permeability. Data from animal studies indicate that use of olive oil (Tsai et al., 2007; Farr et al., 2012; Martinez-Lapiscina et al., 2013) increased memory.

Flavonoids have been proposed as possible therapeutic agents for CAD (Kempuraj et al., 2005; Perez-Vizcaino and Duarte, 2010; Yap et al., 2010). A meta analysis of epidemiological studies showed an inverse relationship between flavonol/flavone intake and CAD (Perez-Vizcaino and Duarte, 2010). A review of publications from European and US population cohorts reported that consumption of flavonoids was strongly associated with lower CAD mortality (Peterson et al., 2012). A double-blind, placebo-controlled, randomized clinical study using the polyhenolic compound Pycnogenol showed improved endothelial function in patients with CAD (Enseleit et al., 2012) and a study of 2-week consumption of a polyphenolic drink lowered urinary biomarkers of CAD (Mullen et al., 2011).

Luteolin suppressed adipocyte activation of macrophages, inhibited endothelial inflammation (Ando et al., 2009; Deqiu et al., 2011), increased insulin sensitivity of the endothelium (Deqiu et al., 2011), and prevented niacin-induced flush (Kalogeromitros et al., 2008; Papaliodis et al., 2008). Luteolin also protected low density lipoprotein from oxidation (Brown and Rice-Evans, 1998) and improved experimentally diet-induced obesity and insulin resistance (Xu et al., 2014), as well as protected against high fat-diet induced cognitive deficits (Liu et al., 2014) in mice.

Mechanism of flavonoid action

Luteolin inhibits multiple signaling steps including PI3K, NFκB, PKCθ, STAT3, and intracellular calcium ions (Kempuraj et al., 2005; Lopez-Lazaro, 2009). Flavonoids also inhibit MC degranulation by interacting with distinct vesicle-dependent SNARE complexes (Yang et al., 2013). It was recently reported that certain flavonoids inhibited cytokine expression in mouse bone marrow-derived mast cell by interfering with IL-33 signaling (Funakoshi-Tago et al., 2015).

Flavonoids can also inhibit acetylcholinesterase (Tsai et al., 2007; Boudouda et al., 2015), which will increase acetylcholine and improve memory (Table 1). It is of interest that luteolin further inhibits release of the excitatory neurotransmitter glutamate (Lin et al., 2011), while it activates receptors for the inhibitory neurotransmitter γ-amino butyric acid (GABA) independent of GABA, suggesting it may also have a calming effect (Hanrahan et al., 2011). In fact, benzodiazepines that act by activating GABA receptors were shown to bind to MCs (Miller et al., 1988).

Conclusion

Presently, 1 in 20 individuals over the age of 65 has dementia, while just the European population over 65 will rise from 17.4% in 2010 to 24% in 2030 or about 200 million people (United Nations Department of Economic and Social Affairs Population Division, 2015). The cost of caring for AD patients in the US is estimated to be $220 billion per year (Alzheimers Association, 2015). These numbers do not include brain “fog” present in the others disorders discussed. For instance, the cost of ASDs to the US economy is estimated at $ 180 billion per year. It is therefore obvious that any effective treatment will make a significant difference both to the health of the patients and to the economy. However, in spite of intensive research, clinical trials targeting have failed (Corbett et al., 2012) necessitating new therapeutic targets and there are no effective treatments for the other neuropsychiatric disorders discussed.

Flavonoids are generally considered safe (Kawanishi et al., 2005; Harwood et al., 2007; Seelinger et al., 2008; Corcoran et al., 2012; Theoharides et al., 2014). Unfortunately, some of the cheaper sources of flavonoids found in dietary supplements are from peanut shells and fava beans and may lead to anaphylactic reactions or hemolytic anemia to allergic and G6PD-deficient individuals, respectively. Flavonoids are extensively metabolized (Chen et al., 2014) primarily through glucoronidation, methylation, and sulphation (Hollman et al., 1995; Hollman and Katan, 1997). Therefore, flavonoids must be used with caution when administered with other natural polyphenolic molecules (e.g., curcumin, resveratrol) or drugs metabolized by the liver as they may affect the blood levels of themselves or of other drugs (Theoharides and Asadi, 2012). Tetramethoxyluteolin is already methylated and less likely to affect liver metabolism, is more stable (Walle, 2007), and has better bioavailability (Wei et al., 2014). Intranasal tetramethoxyluteolin preparations would offer the additional advantage of delivering the flavonoid directly to the brain through the cribriform plexus as was shown for some other compounds (Zhuang et al., 2011).

Disclosures

TT is on the Scientific Advisory Board of the Mastocytosis Society (http://www.tmsforacure.org/) and on the Board of Directors of two nonprofit foundations (http://www.braingate.org; www.autismfreebrain.org). JS is the TMS regional patient support leader for Michigan. TT is the recipient of US Patent No. 8,268,365 for the treatment of brain inflammation, US Patent No. 7,906,153 for the treatment of multiple sclerosis, and US Patent No. 13/009.282 for the diagnosis and treatment of ASDs.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Acknowledgments

We thank Miss Smaro Panagiotidou for her word processing and drawing skills. This work was supported in part by grants from the US NIH (NS71361), as well as the Autism Research Institute, Mastocytosis Society, the Johnson Botsford Johnson Fnd, the BHARE Fnd, the Michael and Katherine Johnson Family Fnd, the National Autism Association and Safe Minds.

References

  1. Abraham S. N., St John A. L. (2010). Mast cell-orchestrated immunity to pathogens. Nat. Rev. Immunol. 10, 440–452. 10.1038/nri2782 [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aguilar-Valles A., Inoue W., Rummel C., Luheshi G. N. (2015). Obesity, adipokines and neuroinflammation. Neuropharmacology 96(Pt. A), 124–134. 10.1016/j.neuropharm.2014.12.023 [DOI] [PubMed] [Google Scholar]
  3. Alevizos M., Karagkouni A., Panagiotidou S., Vasiadi M., Theoharides T. C. (2013). Stress triggers coronary mast cells leading to cardiac events. Ann. Allergy Asthma Immunol. 112, 309–316. 10.1016/j.anai.2013.09.017 [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Alstadhaug K. B. (2014). Histamine in migraine and brain. Headache 54, 246–259. 10.1111/head.12293 [DOI] [PubMed] [Google Scholar]
  5. Alvarez E. O., Ruarte M. B., Banzan A. M. (2001). Histaminergic systems of the limbic complex on learning and motivation. Behav. Brain Res. 124, 195–202. 10.1016/S0166-4328(01)00213-3 [DOI] [PubMed] [Google Scholar]
  6. Alzheimers Association . (2015). 2015 Alzheimer's disease facts and figures. Alzheimers Dement. 11, 332–384. 10.1016/j.jalz.2015.02.003 [DOI] [PubMed] [Google Scholar]
  7. Ando C., Takahashi N., Hirai S., Nishimura K., Lin S., Uemura T., et al. (2009). Luteolin, a food-derived flavonoid, suppresses adipocyte-dependent activation of macrophages by inhibiting JNK activation. FEBS Lett. 583, 3649–3654. 10.1016/j.febslet.2009.10.045 [DOI] [PubMed] [Google Scholar]
  8. Arnoldussen I. A., Kiliaan A. J., Gustafson D. R. (2014). Obesity and dementia: adipokines interact with the brain. Eur. Neuropsychopharmacol. 24, 1982–999. 10.1016/j.euroneuro.2014.03.002 [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Asadi S., Zhang B., Weng Z., Angelidou A., Kempuraj D., Alysandratos K. D., et al. (2010). Luteolin and thiosalicylate inhibit HgCl(2) and thimerosal-induced VEGF release from human mast cells. Int. J. Immunopathol. Pharmacol. 23, 1015–1020. [DOI] [PubMed] [Google Scholar]
  10. Banuelos-Cabrera I., Valle-Dorado M. G., Aldana B. I., Orozco-Suarez S. A., Rocha L. (2014). Role of histaminergic system in blood-brain barrier dysfunction associated with neurological disorders. Arch. Med Res. 45, 677–686. 10.1016/j.arcmed.2014.11.010 [DOI] [PubMed] [Google Scholar]
  11. Baptista F. I., Henriques A. G., Silva A. M., Wiltfang J., da Cruz e Silva O. A. (2014). Flavonoids as therapeutic compounds targeting key proteins involved in Alzheimer's disease. ACS Chem. Neurosci. 5, 83–92. 10.1021/cn400213r [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Beumer W., Gibney S. M., Drexhage R. C., Pont-Lezica L., Doorduin J., Klein H. C., et al. (2012). The immune theory of psychiatric diseases: a key role for activated microglia and circulating monocytes. J. Leukoc. Biol. 92, 959–975. 10.1189/jlb.0212100 [DOI] [PubMed] [Google Scholar]
  13. Blank U., Rivera J. (2004). The ins and outs of IgE-dependent mast-cell exocytosis. Trends Immunol. 25, 266–273. 10.1016/j.it.2004.03.005 [DOI] [PubMed] [Google Scholar]
  14. Bodmer S., Imark C., Kneubuhl M. (1999). Biogenic amines in foods: histamine and food processing. Inflamm. Res. 48, 296–300. 10.1007/s000110050463 [DOI] [PubMed] [Google Scholar]
  15. Boudouda H. B., Zeghib A., Karioti A., Bilia A. R., Ozturk M., Aouni M., et al. (2015). Antibacterial, antioxidant, anti-cholinesterase potential and flavonol glycosides of Biscutella raphanifolia (Brassicaceae). Pak. J. Pharm. Sci. 28, 153–158. [PubMed] [Google Scholar]
  16. Brewer J. H., Thrasher J. D., Straus D. C., Madison R. A., Hooper D. (2013). Detection of mycotoxins in patients with chronic fatigue syndrome. Toxins 5, 605–617. 10.3390/toxins5040605 [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Brioni J. D., Esbenshade T. A., Garrison T. R., Bitner S. R., Cowart M. D. (2011). Discovery of histamine H3 antagonists for the treatment of cognitive disorders and Alzheimer's disease. J. Pharmacol. Exp. Ther. 336, 38–46. 10.1124/jpet.110.166876 [DOI] [PubMed] [Google Scholar]
  18. Brown J. E., Rice-Evans C. A. (1998). Luteolin-rich artichoke extract protects low density lipoprotein from oxidation in vitro. Free Radic. Res. 29, 247–255. 10.1080/10715769800300281 [DOI] [PubMed] [Google Scholar]
  19. Bryniarski K., Ptak W., Jayakumar A., Pullmann K., Caplan M. J., Chairoungdua A., et al. (2013). Antigen-specific, antibody-coated, exosome-like nanovesicles deliver suppressor T-cell microRNA-150 to effector T cells to inhibit contact sensitivity. J. Allergy Clin. Immunol. 132, 170–181. 10.1016/j.jaci.2013.04.048 [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Byrne M. L., O'Brien-Simpson N. M., Mitchell S. A., Allen N. B. (2015). Adolescent-onset depression: are obesity and inflammation developmental mechanisms or outcomes? Child Psychiatry Hum. Dev.. [Epub ahead of print] 10.1007/s10578-014-0524-9 [DOI] [PubMed] [Google Scholar]
  21. Cao J., Papadopoulou N., Kempuraj D., Boucher W. S., Sugimoto K., Cetrulo C. L., et al. (2005). Human mast cells express corticotropin-releasing hormone (CRH) receptors and CRH leads to selective secretion of vascular endothelial growth factor. J. Immunol. 174, 7665–7675. 10.4049/jimmunol.174.12.7665 [DOI] [PubMed] [Google Scholar]
  22. Chakraborty S., Kaushik D. K., Gupta M., Basu A. (2010). Inflammasome signaling at the heart of central nervous system pathology. J. Neurosci. Res. 88, 1615–1631. 10.1002/jnr.22343 [DOI] [PubMed] [Google Scholar]
  23. Chen H. Q., Jin Z. Y., Wang X. J., Xu X. M., Deng L., Zhao J. W. (2008). Luteolin protects dopaminergic neurons from inflammation-induced injury through inhibition of microglial activation. Neurosci. Lett. 448, 175–179. 10.1016/j.neulet.2008.10.046 [DOI] [PubMed] [Google Scholar]
  24. Chen Z., Zheng S., Li L., Jiang H. (2014). Metabolism of flavonoids in human: a comprehensive review. Curr. Drug Metab. 15, 48–61. 10.2174/138920021501140218125020 [DOI] [PubMed] [Google Scholar]
  25. Chrostowska M., Szyndler A., Hoffmann M., Narkiewicz K. (2013). Impact of obesity on cardiovascular health. Best. Pract. Res. Clin. Endocrinol. Metab. 27, 147–156. 10.1016/j.beem.2013.01.004 [DOI] [PubMed] [Google Scholar]
  26. Corbett A., Smith J., Ballard C. (2012). New and emerging treatments for Alzheimer's disease. Expert. Rev. Neurother. 12, 535–543. 10.1586/ern.12.43 [DOI] [PubMed] [Google Scholar]
  27. Corcoran M. P., McKay D. L., Blumberg J. B. (2012). Flavonoid basics: chemistry, sources, mechanisms of action, and safety. J. Nutr. Gerontol. Geriatr. 31, 176–189. 10.1080/21551197.2012.698219 [DOI] [PubMed] [Google Scholar]
  28. Crago B. R., Gray M. R., Nelson L. A., Davis M., Arnold L., Thrasher J. D. (2003). Psychological, neuropsychological, and electrocortical effects of mixed mold exposure. Arch. Environ. Health 58, 452–463. 10.3200/AEOH.58.8.452-463 [DOI] [PubMed] [Google Scholar]
  29. da Silveira C. K., Furini C. R., Benetti F., Monteiro S. C., Izquierdo I. (2013). The role of histamine receptors in the consolidation of object recognition memory. Neurobiol. Learn. Mem. 103, 64–71. 10.1016/j.nlm.2013.04.001 [DOI] [PubMed] [Google Scholar]
  30. Deqiu Z., Kang L., Jiali Y., Baolin L., Gaolin L. (2011). Luteolin inhibits inflammatory response and improves insulin sensitivity in the endothelium. Biochimie 93, 506–512. 10.1016/j.biochi.2010.11.002 [DOI] [PubMed] [Google Scholar]
  31. Dirscherl K., Karlstetter M., Ebert S., Kraus D., Hlawatsch J., Walczak Y., et al. (2010). Luteolin triggers global changes in the microglial transcriptome leading to a unique anti-inflammatory and neuroprotective phenotype. J. Neuroinflammation 7:3. 10.1186/1742-2094-7-3 [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Donelan J., Boucher W., Papadopoulou N., Lytinas M., Papaliodis D., Theoharides T. C. (2006). Corticotropin-releasing hormone induces skin vascular permeability through a neurotensin-dependent process. Proc. Natl. Acad. Sci. U.S.A. 103, 7759–7764. 10.1073/pnas.0602210103 [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Dong H., Zhang X., Qian Y. (2014). Mast cells and neuroinflammation. Med. Sci. Monit. Basic Res. 20, 200–206. 10.12659/MSMBR.893093 [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Drzezga A., Becker J. A., Van Dijk K. R., Sreenivasan A., Talukdar T., Sullivan C., et al. (2011). Neuronal dysfunction and disconnection of cortical hubs in non-demented subjects with elevated amyloid burden. Brain 134, 1635–1646. 10.1093/brain/awr066 [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Empting L. D. (2009). Neurologic and neuropsychiatric syndrome features of mold and mycotoxin exposure. Toxicol. Ind. Health 25, 577–581. 10.1177/0748233709348393 [DOI] [PubMed] [Google Scholar]
  36. Enoksson M., Lyberg K., Moller-Westerberg C., Fallon P. G., Nilsson G., Lunderius-Andersson C. (2011). Mast cells as sensors of cell injury through IL-33 recognition. J. Immunol. 186, 2523–2528. 10.4049/jimmunol.1003383 [DOI] [PubMed] [Google Scholar]
  37. Enseleit F., Sudano I., Periat D., Winnik S., Wolfrum M., Flammer A. J., et al. (2012). Effects of Pycnogenol on endothelial function in patients with stable coronary artery disease: a double-blind, randomized, placebo-controlled, cross-over study. Eur. Heart J. 33, 1589–1597. 10.1093/eurheartj/ehr482 [DOI] [PubMed] [Google Scholar]
  38. Esposito P., Chandler N., Kandere-Grzybowska K., Basu S., Jacobson S., Connolly R., et al. (2002). Corticotropin-releasing hormone (CRH) and brain mast cells regulate blood-brain-barrier permeability induced by acute stress. J. Pharmacol. Exp. Ther. 303, 1061–1066. 10.1124/jpet.102.038497 [DOI] [PubMed] [Google Scholar]
  39. Esposito P., Gheorghe D., Kandere K., Pang X., Conally R., Jacobson S., et al. (2001). Acute stress increases permeability of the blood-brain-barrier through activation of brain mast cells. Brain Res. 888, 117–127. 10.1016/S0006-8993(00)03026-2 [DOI] [PubMed] [Google Scholar]
  40. Farr S. A., Price T. O., Dominguez L. J., Motisi A., Saiano F., Niehoff M. L., et al. (2012). Extra virgin olive oil improves learning and memory in SAMP8 mice. J Alzheimers Dis. 28, 81–92. 10.3233/JAD-2011-110662 [DOI] [PubMed] [Google Scholar]
  41. Fatokun A. A., Liu J. O., Dawson V. L., Dawson T. M. (2013). Identification through high-throughput screening of 4′-methoxyflavone and 3′,4′-dimethoxyflavone as novel neuroprotective inhibitors of parthanatos. Br. J. Pharmacol. 169, 1263–1278. 10.1111/bph.12201 [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Franco J. L., Posser T., Missau F., Pizzolatti M. G., Dos Santos A. R., Souza D. O., et al. (2010). Structure-activity relationship of flavonoids derived from medicinal plants in preventing methylmercury-induced mitochondrial dysfunction. Environ. Toxicol. Pharmacol. 30, 272–278. 10.1016/j.etap.2010.07.003 [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Fu X., Zhang J., Guo L., Xu Y., Sun L., Wang S., et al. (2014). Protective role of luteolin against cognitive dysfunction induced by chronic cerebral hypoperfusion in rats. Pharmacol. Biochem. Behav. 126, 122–130. 10.1016/j.pbb.2014.09.005 [DOI] [PubMed] [Google Scholar]
  44. Funakoshi-Tago M., Okamoto K., Izumi R., Tago K., Yanagisawa K., Narukawa Y., et al. (2015). Anti-inflammatory activity of flavonoids in Nepalese propolis is attributed to inhibition of the IL-33 signaling pathway. Int. Immunopharmacol. 25, 189–198. 10.1016/j.intimp.2015.01.012 [DOI] [PubMed] [Google Scholar]
  45. Galli S. J., Grimbaldeston M., Tsai M. (2008a). Immunomodulatory mast cells: negative, as well as positive, regulators of immunity. Nat. Rev. Immunol. 8, 478–486. 10.1038/nri2327 [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Galli S. J., Tsai M., Piliponsky A. M. (2008b). The development of allergic inflammation. Nature 454, 445–454. 10.1038/nature07204 [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Gonzalez-Correa J. A., Navas M. D., Lopez-Villodres J. A., Trujillo M., Espartero J. L., De La Cruz J. P. (2008). Neuroprotective effect of hydroxytyrosol and hydroxytyrosol acetate in rat brain slices subjected to hypoxia-reoxygenation. Neurosci. Lett. 446, 143–146. 10.1016/j.neulet.2008.09.022 [DOI] [PubMed] [Google Scholar]
  48. Gordon W. A., Cantor J. B., Johanning E., Charatz H. J., Ashman T. A., Breeze J. L., et al. (2004). Cognitive impairment associated with toxigenic fungal exposure: a replication and extension of previous findings. Appl. Neuropsychol. 11, 65–74. 10.1207/s15324826an1102_1 [DOI] [PubMed] [Google Scholar]
  49. Grosso C., Valentao P., Ferreres F., Andrade P. B. (2013). The use of flavonoids in central nervous system disorders. Curr. Med. Chem. 20, 4697–4719. 10.2174/09298673113209990155 [DOI] [PubMed] [Google Scholar]
  50. Gupta S., Ellis S. E., Ashar F. N., Moes A., Bader J. S., Zhan J., et al. (2014). Transcriptome analysis reveals dysregulation of innate immune response genes and neuronal activity-dependent genes in autism. Nat. Commun. 5:5748. 10.1038/ncomms6748 [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Haas H. L., Sergeeva O. A., Selbach O. (2008). Histamine in the nervous system. Physiol. Rev. 88, 1183–1241. 10.1152/physrev.00043.2007 [DOI] [PubMed] [Google Scholar]
  52. Hagedorn M., Carter V. L., Leong J. C., Kleinhans F. W. (2010). Physiology and cryosensitivity of coral endosymbiotic algae (Symbiodinium). Cryobiology 60, 147–158. 10.1016/j.cryobiol.2009.10.005 [DOI] [PubMed] [Google Scholar]
  53. Hamdani N., Doukhan R., Kurtlucan O., Tamouza R., Leboyer M. (2013). Immunity, inflammation, and bipolar disorder: diagnostic and therapeutic implications. Curr. Psychiatry Rep. 15:387. 10.1007/s11920-013-0387-y [DOI] [PubMed] [Google Scholar]
  54. Hanrahan J. R., Chebib M., Johnston G. A. (2011). Flavonoid modulation of GABA(A) receptors. Br. J. Pharmacol. 163, 234–245. 10.1111/j.1476-5381.2011.01228.x [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Harwood M., Nielewska-Nikiel B., Borzelleca J. F., Flamm G. W., Williams G. M., Lines T. C. (2007). A critical review of the data related to the safety of quercetin and lack of evidence of in vivo toxicity, including lack of genotoxic/carcinogenic properties. Food Chem. Toxicol. 45, 2179–2205. 10.1016/j.fct.2007.05.015 [DOI] [PubMed] [Google Scholar]
  56. Heneka M. T., Carson M. J., Khoury J. E., Landreth G. E., Brosseron F., Feinstein D. L., et al. (2015). Neuroinflammation in Alzheimer's disease. Lancet Neurol. 14, 388–405. 10.1016/S1474-4422(15)70016-5 [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Ho L., Ferruzzi M. G., Janle E. M., Wang J., Gong B., Chen T. Y., et al. (2013). Identification of brain-targeted bioactive dietary quercetin-3-O-glucuronide as a novel intervention for Alzheimer's disease. FASEB J. 27, 769–781. 10.1096/fj.12-212118 [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Hodes G. E., Pfau M. L., Leboeuf M., Golden S. A., Christoffel D. J., Bregman D., et al. (2014). Individual differences in the peripheral immune system promote resilience versus susceptibility to social stress. Proc. Natl. Acad. Sci. U.S.A. 111, 16136–16141. 10.1073/pnas.1415191111 [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Hollman P. C., de Vries J. H., van Leeuwen S. D., Mengelers M. J., Katan M. B. (1995). Absorption of dietary quercetin glycosides and quercetin in healthy ileostomy volunteers. Am. J. Clin. Nutr. 62, 1276–1282. [DOI] [PubMed] [Google Scholar]
  60. Hollman P. C., Katan M. B. (1997). Absorption, metabolism and health effects of dietary flavonoids in man. Biomed. Pharmacother. 51, 305–310. 10.1016/S0753-3322(97)88045-6 [DOI] [PubMed] [Google Scholar]
  61. Hsiao E. Y., McBride S. W., Chow J., Mazmanian S. K., Patterson P. H. (2012). Modeling an autism risk factor in mice leads to permanent immune dysregulation. Proc. Natl. Acad. Sci. U.S.A. 109, 12776–12781. 10.1073/pnas.1202556109 [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Huang M., Pang X., Karalis K., Theoharides T. C. (2003). Stress-induced interleukin-6 release in mice is mast cell-dependent and more pronounced in Apolipoprotein E knockout mice. Cardiovasc. Res. 59, 241–249. 10.1016/S0008-6363(03)00340-7 [DOI] [PubMed] [Google Scholar]
  63. Iantorno M., Campia U., Di D. N., Nistico S., Forleo G. B., Cardillo C., et al. (2014). Obesity, inflammation and endothelial dysfunction. J. Biol. Regul. Homeost. Agents 28, 169–176. [PubMed] [Google Scholar]
  64. Jager A. K., Saaby L. (2011). Flavonoids and the CNS. Molecules 16, 1471–1485. 10.3390/molecules16021471 [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Jang S., Dilger R. N., Johnson R. W. (2010a). Luteolin inhibits microglia and alters hippocampal-dependent spatial working memory in aged mice. J. Nutr. 140, 1892–1898. 10.3945/jn.110.123273 [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Jang S., Kelley K. W., Johnson R. W. (2008). Luteolin reduces IL-6 production in microglia by inhibiting JNK phosphorylation and activation of AP-1. Proc. Natl. Acad. Sci. U.S.A. 105, 7534–7539. 10.1073/pnas.0802865105 [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Jang S. W., Liu X., Yepes M., Shepherd K. R., Miller G. W., Liu Y., et al. (2010b). A selective TrkB agonist with potent neurotrophic activities by 7,8-dihydroxyflavone. Proc. Natl. Acad. Sci. U.S.A. 107, 2687–2692. 10.1073/pnas.0913572107 [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Jones K. A., Thomsen C. (2013). The role of the innate immune system in psychiatric disorders. Mol. Cell Neurosci. 53, 52–62. 10.1016/j.mcn.2012.10.002 [DOI] [PubMed] [Google Scholar]
  69. Jones Q. R., Warford J., Rupasinghe H. P., Robertson G. S. (2012). Target-based selection of flavonoids for neurodegenerative disorders. Trends Pharmacol. Sci. 33, 602–610. 10.1016/j.tips.2012.08.002 [DOI] [PubMed] [Google Scholar]
  70. Joulia R., Gaudenzio N., Rodrigues M., Lopez J., Blanchard N., Valitutti S., et al. (2015). Mast cells form antibody-dependent degranulatory synapse for dedicated secretion and defence. Nat. Commun. 6:6174. 10.1038/ncomms7174 [DOI] [PubMed] [Google Scholar]
  71. Kalesnikoff J., Galli S. J. (2008). New developments in mast cell biology. Nat. Immunol. 9, 1215–1223. 10.1038/ni.f.216 [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Kalogeromitros D., Makris M., Chliva C., Aggelides X., Kempuraj D., Theoharides T. C. (2008). A quercetin containing supplement reduces niacin-induced flush in humans. Int. J. Immunopathol. Pharmacol. 21, 509–514. 10.1177/039463200802100304 [DOI] [PubMed] [Google Scholar]
  73. Kalogeromitros D., Syrigou E. I., Makris M., Kempuraj D., Stavrianeas N. G., Vasiadi M., et al. (2007). Nasal provocation of patients with allergic rhinitis and the hypothalamic-pituitary-adrenal axis. Ann. Allergy Asthma Immunol. 98, 269–273. 10.1016/S1081-1206(10)60717-X [DOI] [PubMed] [Google Scholar]
  74. Kamei C., Tasaka K. (1993). Effect of histamine on memory retrieval in old rats. Biol. Pharm. Bull. 16, 128–132. 10.1248/bpb.16.128 [DOI] [PubMed] [Google Scholar]
  75. Kandere-Grzybowska K., Letourneau R., Kempuraj D., Donelan J., Poplawski S., Boucher W., et al. (2003). IL-1 induces vesicular secretion of IL-6 without degranulation from human mast cells. J. Immunol. 171, 4830–4836. 10.4049/jimmunol.171.9.4830 [DOI] [PubMed] [Google Scholar]
  76. Kao T. K., Ou Y. C., Lin S. Y., Pan H. C., Song P. J., Raung S. L., et al. (2011). Luteolin inhibits cytokine expression in endotoxin/cytokine-stimulated microglia. J. Nutr. Biochem. 22, 612–624. 10.1016/j.jnutbio.2010.01.011 [DOI] [PubMed] [Google Scholar]
  77. Kawanishi S., Oikawa S., Murata M. (2005). Evaluation for safety of antioxidant chemopreventive agents. Antioxid. Redox Signal. 7, 1728–1739. 10.1089/ars.2005.7.1728 [DOI] [PubMed] [Google Scholar]
  78. Kawikova I., Askenase P. W. (2015). Diagnostic and therapeutic potentials of exosomes in CNS diseases. Brain Res. 1617, 63–71. 10.1016/j.brainres.2014.09.070 [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Kempuraj D., Madhappan B., Christodoulou S., Boucher W., Cao J., Papadopoulou N., et al. (2005). Flavonols inhibit proinflammatory mediator release, intracellular calcium ion levels and protein kinase C theta phosphorylation in human mast cells. Br. J. Pharmacol. 145, 934–944. 10.1038/sj.bjp.0706246 [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Kempuraj D., Tagen M., Iliopoulou B. P., Clemons A., Vasiadi M., Boucher W., et al. (2008). Luteolin inhibits myelin basic protein-induced human mast cell activation and mast cell dependent stimulation of Jurkat T cells. Br. J. Pharmacol. 155, 1076–1084. 10.1038/bjp.2008.356 [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Kerr D., Krishnan C., Pucak M. L., Carmen J. (2005). The immune system and neuropsychiatric diseases. Int. Rev. Psychiatry 17, 443–449. 10.1080/0264830500381435 [DOI] [PubMed] [Google Scholar]
  82. Khemka V. K., Bagchi D., Bandyopadhyay K., Bir A., Chattopadhyay M., Biswas A., et al. (2014). Altered serum levels of adipokines and insulin in probable Alzheimer's disease. J. Alzheimers Dis. 41, 525–533. 10.3233/JAD-140006 [DOI] [PubMed] [Google Scholar]
  83. Kilburn K. H. (2009). Neurobehavioral and pulmonary impairment in 105 adults with indoor exposure to molds compared to 100 exposed to chemicals. Toxicol. Ind. Health 25, 681–692. 10.1177/0748233709348390 [DOI] [PubMed] [Google Scholar]
  84. Kiliaan A. J., Arnoldussen I. A., Gustafson D. R. (2014). Adipokines: a link between obesity and dementia? Lancet Neurol. 13, 913–923. 10.1016/S1474-4422(14)70085-7 [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Kimata M., Shichijo M., Miura T., Serizawa I., Inagaki N., Nagai H. (2000). Effects of luteolin, quercetin and baicalein on immunoglobulin E-mediated mediator release from human cultured mast cells. Clin. Exp. Allergy 30, 501–508. 10.1046/j.1365-2222.2000.00768.x [DOI] [PubMed] [Google Scholar]
  86. Kovanen P. T., Kaartinen M., Paavonen T. (1995). Infiltrates of activated mast cells at the site of coronary atheromatous erosion or rupture in myocardial infarction. Circulation 92, 1084–1088. 10.1161/01.CIR.92.5.1084 [DOI] [PubMed] [Google Scholar]
  87. Kritas S. K., Caraffa A., Antinolfi P., Saggini A., Pantalone A., Rosati M., et al. (2014a). Nerve growth factor interactions with mast cells. Int. J. Immunopathol. Pharmacol. 27, 15–19. [DOI] [PubMed] [Google Scholar]
  88. Kritas S. K., Saggini A., Cerulli G., Caraffa A., Antinolfi P., Pantalone A., et al. (2014b). Corticotropin-releasing hormone, microglia and mental disorders. Int. J. Immunopathol. Pharmacol. 27, 163–167. [DOI] [PubMed] [Google Scholar]
  89. Laine P., Kaartinen M., Penttilä A., Panula P., Paavonen T., Kovanen P. T. (1999). Association between myocardial infarction and the mast cells in the adventitia of the infarct-related coronary artery. Circulation 99, 361–369. 10.1161/01.CIR.99.3.361 [DOI] [PubMed] [Google Scholar]
  90. Landete J. M., De las R. B., Marcobal A., Munoz R. (2008). Updated molecular knowledge about histamine biosynthesis by bacteria. Crit. Rev. Food Sci. Nutr. 48, 697–714. 10.1080/10408390701639041 [DOI] [PubMed] [Google Scholar]
  91. Larsen F. O., Clementsen P., Hansen M., Maltbaek N., Gravesen S., Skov P. S., et al. (1996). The indoor microfungus Trichoderma viride potentiates histamine release from human bronchoalveolar cells. APMIS 104, 673–679. 10.1111/j.1699-0463.1996.tb04928.x [DOI] [PubMed] [Google Scholar]
  92. Lebwohl B., Ludvigsson J. F. (2014). Editorial: brain ‘fog’ and coeliac disease - evidence for its existence. Aliment. Pharmacol. Ther. 40, 565. 10.1111/apt.12852 [DOI] [PubMed] [Google Scholar]
  93. Li W., Sperry J. B., Crowe A., Trojanowski J. Q., Smith A. B., III., Lee V. M. (2009a). Inhibition of tau fibrillization by oleocanthal via reaction with the amino groups of tau. J. Neurochem. 110, 1339–1351. 10.1111/j.1471-4159.2009.06224.x [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Li X., Chauhan A., Sheikh A. M., Patil S., Chauhan V., Li X. M., et al. (2009b). Elevated immune response in the brain of autistic patients. J. Neuroimmunol. 207, 111–116. 10.1016/j.jneuroim.2008.12.002 [DOI] [PMC free article] [PubMed] [Google Scholar]
  95. Libby P., Ridker P. M., Maseri A. (2002). Inflammation and atherosclerosis. Circulation 105, 1135–1143. 10.1161/hc0902.104353 [DOI] [PubMed] [Google Scholar]
  96. Lichtwark I. T., Newnham E. D., Robinson S. R., Shepherd S. J., Hosking P., Gibson P. R., et al. (2014). Cognitive impairment in coeliac disease improves on a gluten-free diet and correlates with histological and serological indices of disease severity. Aliment. Pharmacol. Ther. 40, 160–170. 10.1111/apt.12809 [DOI] [PubMed] [Google Scholar]
  97. Lin T. Y., Lu C. W., Chang C. C., Huang S. K., Wang S. J. (2011). Luteolin inhibits the release of glutamate in rat cerebrocortical nerve terminals. J. Agric. Food Chem. 59, 8458–8466. 10.1021/jf201637u [DOI] [PubMed] [Google Scholar]
  98. Liu R., Gao M., Qiang G. F., Zhang T. T., Lan X., Ying J., et al. (2009). The anti-amnesic effects of luteolin against amyloid beta(25-35) peptide-induced toxicity in mice involve the protection of neurovascular unit. Neuroscience 162, 1232–1243. 10.1016/j.neuroscience.2009.05.009 [DOI] [PubMed] [Google Scholar]
  99. Liu R., Zhang T. T., Zhou D., Bai X. Y., Zhou W. L., Huang C., et al. (2013). Quercetin protects against the Abeta(25-35)-induced amnesic injury: involvement of inactivation of rage-mediated pathway and conservation of the NVU. Neuropharmacology 67, 419–431. 10.1016/j.neuropharm.2012.11.018 [DOI] [PubMed] [Google Scholar]
  100. Liu Y., Fu X., Lan N., Li S., Zhang J., Wang S., et al. (2014). Luteolin protects against high fat diet-induced cognitive deficits in obesity mice. Behav. Brain Res. 267, 178–188. 10.1016/j.bbr.2014.02.040 [DOI] [PubMed] [Google Scholar]
  101. Lopez-Lazaro M. (2009). Distribution and biological activities of the flavonoid luteolin. Mini. Rev. Med. Chem. 9, 31–59. 10.2174/138955709787001712 [DOI] [PubMed] [Google Scholar]
  102. Maintz L., Novak N. (2007). Histamine and histamine intolerance. Am. J. Clin. Nutr. 85, 1185–1196. [DOI] [PubMed] [Google Scholar]
  103. Martinez-Lapiscina E. H., Clavero P., Toledo E., San J. B., Sanchez-Tainta A., Corella D., et al. (2013). Virgin olive oil supplementation and long-term cognition: the PREDIMED-NAVARRA randomized, trial. J. Nutr. Health Aging 17, 544–552. 10.1007/s12603-013-0027-6 [DOI] [PubMed] [Google Scholar]
  104. Mathew A., Yoshida Y., Maekawa T., Kumar D. S. (2011). Alzheimer's disease: cholesterol a menace? Brain Res. Bull. 86, 1–12. 10.1016/j.brainresbull.2011.06.006 [DOI] [PubMed] [Google Scholar]
  105. Matusik P., Guzik B., Weber C., Guzik T. J. (2012). Do we know enough about the immune pathogenesis of acute coronary syndromes to improve clinical practice? Thromb. Haemost. 108, 443–456. 10.1160/TH12-05-0341 [DOI] [PubMed] [Google Scholar]
  106. McKittrick C. M., Lawrence C. E., Carswell H. V. (2015). Mast cells promote blood brain barrier breakdown and neutrophil infiltration in a mouse model of focal cerebral ischemia. J. Cereb. Blood Flow Metab. 35, 638–647. 10.1038/jcbfm.2014.239 [DOI] [PMC free article] [PubMed] [Google Scholar]
  107. Mecocci P., Tinarelli C., Schulz R. J., Polidori M. C. (2014). Nutraceuticals in cognitive impairment and Alzheimer's disease. Front. Pharmacol. 5:147. 10.3389/fphar.2014.00147 [DOI] [PMC free article] [PubMed] [Google Scholar]
  108. Middleton E. J., Kandaswami C., Theoharides T. C. (2000). The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease and cancer. Pharmacol. Rev. 52, 673–751. [PubMed] [Google Scholar]
  109. Miller L. G., Lee-Parritz A., Greenblatt D. J., Theoharides T. C. (1988). High affinity benzodiazepine receptors on rat peritoneal mast cells and RBL-1 cells: binding characteristics and effects on granule secretion. Pharmacology 36, 52–60. 10.1159/000138346 [DOI] [PubMed] [Google Scholar]
  110. Mohagheghi F., Bigdeli M. R., Rasoulian B., Hashemi P., Pour M. R. (2011). The neuroprotective effect of olive leaf extract is related to improved blood-brain barrier permeability and brain edema in rat with experimental focal cerebral ischemia. Phytomedicine 18, 170–175. 10.1016/j.phymed.2010.06.007 [DOI] [PubMed] [Google Scholar]
  111. Mohagheghi F., Bigdeli M. R., Rasoulian B., Zeinanloo A. A., Khoshbaten A. (2010). Dietary virgin olive oil reduces blood brain barrier permeability, brain edema, and brain injury in rats subjected to ischemia-reperfusion. Sci. World J. 10, 1180–1191. 10.1100/tsw.2010.128 [DOI] [PMC free article] [PubMed] [Google Scholar]
  112. Molyva D., Kalokasidis K., Poulios C., Dedi H., Karkavelas G., Mirtsou V., et al. (2014). Rupatadine effectively prevents the histamine-induced up regulation of histamine H1R and bradykinin B2R receptor gene expression in the rat paw. Pharmacol. Rep. 66, 952–955. 10.1016/j.pharep.2014.06.008 [DOI] [PubMed] [Google Scholar]
  113. Moura D. S., Georgin-Lavialle S., Gaillard R., Hermine O. (2014). Neuropsychological features of adult mastocytosis. Immunol. Allergy Clin. North Am. 34, 407–422. 10.1016/j.iac.2014.02.001 [DOI] [PubMed] [Google Scholar]
  114. Moura D. S., Sultan S., Georgin-Lavialle S., Barete S., Lortholary O., Gaillard R., et al. (2012). Evidence for cognitive impairment in mastocytosis: prevalence, features and correlations to depression. PLoS ONE 7:e39468. 10.1371/journal.pone.0039468 [DOI] [PMC free article] [PubMed] [Google Scholar]
  115. Moussion C., Ortega N., Girard J. P. (2008). The IL-1-like cytokine IL-33 is constitutively expressed in the nucleus of endothelial cells and epithelial cells in vivo: a novel ‘alarmin’? PLoS ONE 3:e3331. 10.1371/journal.pone.0003331 [DOI] [PMC free article] [PubMed] [Google Scholar]
  116. Mullen W., Gonzalez J., Siwy J., Franke J., Sattar N., Mullan A., et al. (2011). A pilot study on the effect of short-term consumption of a polyphenol rich drink on biomarkers of coronary artery disease defined by urinary proteomics. J. Agric. Food Chem. 59, 12850–12857. 10.1021/jf203369r [DOI] [PubMed] [Google Scholar]
  117. Munkholm K., Vinberg M., Vedel K. L. (2013). Cytokines in bipolar disorder: a systematic review and meta-analysis. J. Affect. Disord. 144, 16–27. 10.1016/j.jad.2012.06.010 [DOI] [PubMed] [Google Scholar]
  118. Nakae S., Suto H., Berry G. J., Galli S. J. (2007). Mast cell-derived TNF can promote Th17 cell-dependent neutrophil recruitment in ovalbumin-challenged OTII mice. Blood 109, 3640–3648. 10.1182/blood-2006-09-046128 [DOI] [PMC free article] [PubMed] [Google Scholar]
  119. Nakae S., Suto H., Iikura M., Kakurai M., Sedgwick J. D., Tsai M., et al. (2006). Mast cells enhance T cell activation: importance of mast cell costimulatory molecules and secreted TNF. J. Immunol. 176, 2238–2248. 10.4049/jimmunol.176.4.2238 [DOI] [PubMed] [Google Scholar]
  120. Nakao A., Nakamura Y., Shibata S. (2015). The circadian clock functions as a potent regulator of allergic reaction. Allergy 70, 467–473. 10.1111/all.12596 [DOI] [PubMed] [Google Scholar]
  121. Nautiyal K. M., Ribeiro A. C., Pfaff D. W., Silver R. (2008). Brain mast cells link the immune system to anxiety-like behavior. Proc. Natl. Acad. Sci. U.S.A. 105, 18053–18057. 10.1073/pnas.0809479105 [DOI] [PMC free article] [PubMed] [Google Scholar]
  122. Ocon A. J. (2013). Caught in the thickness of brain fog: exploring the cognitive symptoms of chronic fatigue syndrome. Front. Physiol. 4:63. 10.3389/fphys.2013.00063 [DOI] [PMC free article] [PubMed] [Google Scholar]
  123. Orsetti M., Ghi P., Di C. G. (2001). Histamine H(3)-receptor antagonism improves memory retention and reverses the cognitive deficit induced by scopolamine in a two-trial place recognition task. Behav. Brain Res. 124, 235–242. 10.1016/S0166-4328(01)00216-9 [DOI] [PubMed] [Google Scholar]
  124. Pang X., Letourneau R., Rozniecki J. J., Wang L., Theoharides T. C. (1996). Definitive characterization of rat hypothalamic mast cells. Neuroscience 73, 889–902. 10.1016/0306-4522(95)00606-0 [DOI] [PubMed] [Google Scholar]
  125. Papaliodis D., Boucher W., Kempuraj D., Theroharides T. C. (2008). The flavonoid luteolin inhibits niacin-induced flush. Br. J. Pharmacol. 153, 1382–1387. 10.1038/sj.bjp.0707668 [DOI] [PMC free article] [PubMed] [Google Scholar]
  126. Pardo C. A., Vargas D. L., Zimmerman A. W. (2005). Immunity, neuroglia and neuroinflammation in autism. Int. Rev. Psychiatry 17, 485–495. 10.1080/02646830500381930 [DOI] [PubMed] [Google Scholar]
  127. Parker-Athill E., Luo D., Bailey A., Giunta B., Tian J., Shytle R. D., et al. (2009). Flavonoids, a prenatal prophylaxis via targeting JAK2/STAT3 signaling to oppose IL-6/MIA associated autism. J. Neuroimmunol. 217, 20–27. 10.1016/j.jneuroim.2009.08.012 [DOI] [PMC free article] [PubMed] [Google Scholar]
  128. Passamonti S., Terdoslavich M., Franca R., Vanzo A., Tramer F., Braidot E., et al. (2009). Bioavailability of flavonoids: a review of their membrane transport and the function of bilitranslocase in animal and plant organisms. Curr. Drug Metab. 10, 369–394. 10.2174/138920009788498950 [DOI] [PubMed] [Google Scholar]
  129. Perez-Vizcaino F., Duarte J. (2010). Flavonols and cardiovascular disease. Mol. Aspects Med. 31, 478–494. 10.1016/j.mam.2010.09.002 [DOI] [PubMed] [Google Scholar]
  130. Peterson J. J., Dwyer J. T., Jacques P. F., McCullough M. L. (2012). Associations between flavonoids and cardiovascular disease incidence or mortality in European and US populations. Nutr. Rev. 70, 491–508. 10.1111/j.1753-4887.2012.00508.x [DOI] [PMC free article] [PubMed] [Google Scholar]
  131. Petra A. I., Panagiotidou S., Stewart J. M., Theoharides T. C. (2014). Spectrum of mast cell activation disorders. Expert Rev. Clin. Immunol. 10, 729–739. 10.1586/1744666X.2014.906302 [DOI] [PubMed] [Google Scholar]
  132. Pitt J., Roth W., Lacor P., Smith A. B., III., Blankenship M., Velasco P., et al. (2009). Alzheimer's-associated Abeta oligomers show altered structure, immunoreactivity and synaptotoxicity with low doses of oleocanthal. Toxicol. Appl. Pharmacol. 240, 189–197. 10.1016/j.taap.2009.07.018 [DOI] [PMC free article] [PubMed] [Google Scholar]
  133. Pizza V., Agresta A., D'Acunto C. W., Festa M., Capasso A. (2011). Neuroinflamm-aging and neurodegenerative diseases: an overview. CNS Neurol. Disord. Drug Targets 10, 621–634. 10.2174/187152711796235014 [DOI] [PubMed] [Google Scholar]
  134. Prester L. (2011). Biogenic amines in fish, fish products and shellfish: a review. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 28, 1547–1560. 10.1080/19440049.2011.600728 [DOI] [PubMed] [Google Scholar]
  135. Qiao H., Andrade M. V., Lisboa F. A., Morgan K., Beaven M. A. (2006). FcepsilonR1 and toll-like receptors mediate synergistic signals to markedly augment production of inflammatory cytokines in murine mast cells. Blood 107, 610–618. 10.1182/blood-2005-06-2271 [DOI] [PMC free article] [PubMed] [Google Scholar]
  136. Raffa R. B. (2011). A proposed mechanism for chemotherapy-related cognitive impairment (‘chemo-fog’). J. Clin. Pharm. Ther. 36, 257–259. 10.1111/j.1365-2710.2010.01188.x [DOI] [PMC free article] [PubMed] [Google Scholar]
  137. Rea W. J., Didriksen N., Simon T. R., Pan Y., Fenyves E. J., Griffiths B. (2003). Effects of toxic exposure to molds and mycotoxins in building-related illnesses. Arch. Environ. Health 58, 399–405. [DOI] [PubMed] [Google Scholar]
  138. Regitz C., Dussling L. M., Wenzel U. (2014). Amyloid-beta (Abeta(1-42))-induced paralysis in Caenorhabditis elegans is inhibited by the polyphenol quercetin through activation of protein degradation pathways. Mol. Nutr. Food Res. 58, 1931–1940. 10.1002/mnfr.201400014 [DOI] [PubMed] [Google Scholar]
  139. Reinhard M. J., Satz P., Scaglione C. A., D'Elia L. F., Rassovsky Y., Arita A. A., et al. (2007). Neuropsychological exploration of alleged mold neurotoxicity. Arch. Clin. Neuropsychol. 22, 533–543. 10.1016/j.acn.2007.03.006 [DOI] [PubMed] [Google Scholar]
  140. Rizk A., Curley J., Robertson J., Raber J. (2004). Anxiety and cognition in histamine H3 receptor-/- mice. Eur. J. Neurosci. 19, 1992–1996. 10.1111/j.1460-9568.2004.03251.x [DOI] [PubMed] [Google Scholar]
  141. Ross A. J., Medow M. S., Rowe P. C., Stewart J. M. (2013). What is brain fog? An evaluation of the symptom in postural tachycardia syndrome. Clin. Auton. Res. 23, 305–311. 10.1007/s10286-013-0212-z [DOI] [PMC free article] [PubMed] [Google Scholar]
  142. Rossignol D. A., Frye R. E. (2012). A review of research trends in physiological abnormalities in autism spectrum disorders: immune dysregulation, inflammation, oxidative stress, mitochondrial dysfunction and environmental toxicant exposures. Mol. Psychiatry 17, 389–401. 10.1038/mp.2011.165 [DOI] [PMC free article] [PubMed] [Google Scholar]
  143. Rozniecki J. J., Dimitriadou V., Lambracht-Hall M., Pang X., Theoharides T. C. (1999a). Morphological and functional demonstration of rat dura mast cell-neuron interactions in vitro and in vivo. Brain Res 849, 1–15. 10.1016/S0006-8993(99)01855-7 [DOI] [PubMed] [Google Scholar]
  144. Rozniecki J. J., Letourneau R., Sugiultzoglu M., Spanos C., Gorbach J., Theoharides T. C. (1999b). Differential effect of histamine-3 receptor active agents on brain, but not peritoneal, mast cell activation. J. Pharmacol. Exp. Ther. 290, 1427–1435. [PubMed] [Google Scholar]
  145. Sakata Y., Komamura K., Hirayama A., Nanto S., Kitakaze M., Hori M., et al. (1996). Elevation of the plasma histamine concentration in the coronary circulation in patients with variant angina. Am. J. Cardiol. 77, 1121–1126. 10.1016/S0002-9149(96)00147-6 [DOI] [PubMed] [Google Scholar]
  146. Sandoval-Cruz M., Garcia-Carrasco M., Sanchez-Porras R., Mendoza-Pinto C., Jimenez-Hernandez M., Munguia-Realpozo P., et al. (2011). Immunopathogenesis of vitiligo. Autoimmun. Rev. 10, 762–765. 10.1016/j.autrev.2011.02.004 [DOI] [PubMed] [Google Scholar]
  147. Schmidt B. M., Ribnicky D. M., Lipsky P. E., Raskin I. (2007). Revisiting the ancient concept of botanical therapeutics. Nat. Chem. Biol. 3, 360–366. 10.1038/nchembio0707-360 [DOI] [PubMed] [Google Scholar]
  148. Schwelberger H. G. (2010). Histamine intolerance: a metabolic disease? Inflamm. Res. 59(Suppl. 2), S219–S221. 10.1007/s00011-009-0134-3 [DOI] [PubMed] [Google Scholar]
  149. Seelinger G., Merfort I., Schempp C. M. (2008). Anti-oxidant, anti-inflammatory and anti-allergic activities of luteolin. Planta Med. 74, 1667–1677. 10.1055/s-0028-1088314 [DOI] [PubMed] [Google Scholar]
  150. Severance E. G., Alaedini A., Yang S., Halling M., Gressitt K. L., Stallings C. R., et al. (2012). Gastrointestinal inflammation and associated immune activation in schizophrenia. Schizophr. Res. 138, 48–53. 10.1016/j.schres.2012.02.025 [DOI] [PMC free article] [PubMed] [Google Scholar]
  151. Shan L., Bao A. M., Swaab D. F. (2015). The human histaminergic system in neuropsychiatric disorders. Trends Neurosci. 38, 167–177. 10.1016/j.tins.2014.12.008 [DOI] [PubMed] [Google Scholar]
  152. Shefler I., Salamon P., Hershko A. Y., Mekori Y. A. (2011). Mast cells as sources and targets of membrane vesicles. Curr. Pharm. Des. 17, 3797–3804. 10.2174/138161211798357836 [DOI] [PubMed] [Google Scholar]
  153. Sheikh I. A., Ali R., Dar T. A., Kamal M. A. (2012). An overview on potential neuroprotective compounds for management of Alzheimer's disease. CNS Neurol. Disord. Drug Targets 11, 1006–1011. 10.2174/1871527311211080010 [DOI] [PubMed] [Google Scholar]
  154. Shenassa E. D., Daskalakis C., Liebhaber A., Braubach M., Brown M. (2007). Dampness and mold in the home and depression: an examination of mold-related illness and perceived control of one's home as possible depression pathways. Am. J. Public Health 97, 1893–1899. 10.2105/AJPH.2006.093773 [DOI] [PMC free article] [PubMed] [Google Scholar]
  155. Shim S. Y., Park J. R., Byun D. S. (2012). 6-Methoxyluteolin from Chrysanthemum zawadskii var. latilobum suppresses histamine release and calcium influx via down-regulation of FcepsilonRI alpha chain expression. J. Microbiol. Biotechnol 22, 622–627. 10.4014/jmb.1111.11060 [DOI] [PubMed] [Google Scholar]
  156. Shoemaker R. C., House D. E. (2006). Sick building syndrome (SBS) and exposure to water-damaged buildings: time series study, clinical trial and mechanisms. Neurotoxicol. Teratol. 28, 573–588. 10.1016/j.ntt.2006.07.003 [DOI] [PubMed] [Google Scholar]
  157. Sismanopoulos N., Delivanis D. A., Alysandratos K. D., Angelidou A., Therianou A., Kalogeromitros D., et al. (2012). Mast cells in allergic and inflammatory diseases. Curr. Pharm. Des. 18, 2261–2277. 10.2174/138161212800165997 [DOI] [PubMed] [Google Scholar]
  158. Sismanopoulos N., Delivanis D. A., Mavrommati D., Hatziagelaki E., Conti P., Theoharides T. C. (2013). Do mast cells link obesity and asthma? Allergy 68, 8–15. 10.1111/all.12043 [DOI] [PMC free article] [PubMed] [Google Scholar]
  159. Skaper S. D., Facci L., Giusti P. (2013). Mast cells, glia and neuroinflammation: partners in crime? Immunology 141, 314–327. 10.1111/imm.12170 [DOI] [PMC free article] [PubMed] [Google Scholar]
  160. Skaper S. D., Giusti P., Facci L. (2012). Microglia and mast cells: two tracks on the road to neuroinflammation. FASEB J. 26, 3103–3117. 10.1096/fj.11-197194 [DOI] [PubMed] [Google Scholar]
  161. Skokos D., Goubran-Botros H., Roa M., Mecheri S. (2002). Immunoregulatory properties of mast cell-derived exosomes. Mol. Immunol. 38, 1359–1362. 10.1016/S0161-5890(02)00088-3 [DOI] [PubMed] [Google Scholar]
  162. Smith J. H., Butterfield J. H., Pardanani A., DeLuca G. C., Cutrer F. M. (2011). Neurologic symptoms and diagnosis in adults with mast cell disease. Clin. Neurol. Neurosurg. 113, 570–574. 10.1016/j.clineuro.2011.05.002 [DOI] [PubMed] [Google Scholar]
  163. Smith S. E., Li J., Garbett K., Mirnics K., Patterson P. H. (2007). Maternal immune activation alters fetal brain development through interleukin-6. J. Neurosci. 27, 10695–10702. 10.1523/JNEUROSCI.2178-07.2007 [DOI] [PMC free article] [PubMed] [Google Scholar]
  164. Solanki I., Parihar P., Mansuri M. L., Parihar M. S. (2015). Flavonoid-based therapies in the early management of neurodegenerative diseases. Adv. Nutr. 6, 64–72. 10.3945/an.114.007500 [DOI] [PMC free article] [PubMed] [Google Scholar]
  165. Spinas E., Kritas S. K., Saggini A., Mobili A., Caraffa A., Antinolfi P., et al. (2014). Role of mast cells in atherosclerosis: a classical inflammatory disease. Int. J. Immunopathol. Pharmacol. 27, 517–521. [DOI] [PubMed] [Google Scholar]
  166. Sumpter T. L., Ho C. H., Pleet A. R., Tkacheva O. A., Shufesky W. J., Rojas-Canales D. M., et al. (2015). Autocrine hemokinin-1 functions as an endogenous adjuvant for IgE-mediated mast cell inflammatory responses. J. Allergy Clin. Immunol. 135, 1019–1030. 10.1016/j.jaci.2014.07.036 [DOI] [PMC free article] [PubMed] [Google Scholar]
  167. Sun Y., Li D. G., Li Q., Huang L., He Z., Zhang F., et al. (2015). Relationship between adipoq gene polymorphism and lipid levels and diabetes. J. Biol. Regul. Homeost. Agents 29, 221–227. [PubMed] [Google Scholar]
  168. Taliou A., Zintzaras E., Lykouras L., Francis K. (2013). An open-label pilot study of a formulation containing the anti-inflammatory flavonoid luteolin and its effects on behavior in children with autism spectrum disorders. Clin. Ther. 35, 592–602. 10.1016/j.clinthera.2013.04.006 [DOI] [PubMed] [Google Scholar]
  169. Tan Z. S., Seshadri S. (2010). Inflammation in the Alzheimer's disease cascade: culprit or innocent bystander? Alzheimers Res. Ther. 2, 6. 10.1186/alzrt29 [DOI] [PMC free article] [PubMed] [Google Scholar]
  170. Theoharides T. C. (1990). Mast cells: the immune gate to the brain. Life Sci. 46, 607–617. 10.1016/0024-3205(90)90129-F [DOI] [PubMed] [Google Scholar]
  171. Theoharides T. C. (2009). Autism spectrum disorders and mastocytosis. Int. J. Immunopathol. Pharmacol. 22, 859–865. [DOI] [PubMed] [Google Scholar]
  172. Theoharides T. C. (2013a). Atopic conditions in search of pathogenesis and therapy. Clin. Ther. 35, 544–547. 10.1016/j.clinthera.2013.04.002 [DOI] [PubMed] [Google Scholar]
  173. Theoharides T. C. (2013b). Is a subtype of autism “allergy of the brain”? Clin. Ther. 35, 584–591. 10.1016/j.clinthera.2013.04.009 [DOI] [PubMed] [Google Scholar]
  174. Theoharides T. C. (2015). Mast cells promote malaria infection? Clin. Ther. 37, 1374–1377. 10.1016/j.clinthera.2015.03.014 [DOI] [PubMed] [Google Scholar]
  175. Theoharides T. C., Alysandratos K. D., Angelidou A., Delivanis D. A., Sismanopoulos N., Zhang B., et al. (2010a). Mast cells and inflammation. Biochim. Biophys. Acta 1822, 21–33. 10.1016/j.bbadis.2010.12.014 [DOI] [PMC free article] [PubMed] [Google Scholar]
  176. Theoharides T. C., Angelidou A., Alysandratos K. D., Zhang B., Asadi S., Francis K., et al. (2012a). Mast cell activation and autism. Biochim. Biophys. Acta 1822, 34–41. 10.1016/j.bbadis.2010.12.017 [DOI] [PubMed] [Google Scholar]
  177. Theoharides T. C., Asadi S. (2012). Unwanted interactions among psychotropic drugs and other treatments for Autism Spectrum Disorders. J. Clin. Psychopharmacol. 32, 437–440. 10.1097/JCP.0b013e31825e00e4 [DOI] [PubMed] [Google Scholar]
  178. Theoharides T. C., Asadi S., Panagiotidou S. (2012b). A case series of a luteolin formulation (NeuroProtek(R)) in children with autism spectrum disorders. Int. J. Immunopathol. Pharmacol. 25, 317–323. [DOI] [PubMed] [Google Scholar]
  179. Theoharides T. C., Asadi S., Patel A. (2013). Focal brain inflammation and autism. J. Neuroinflammation 10:46. 10.1186/1742-2094-10-46 [DOI] [PMC free article] [PubMed] [Google Scholar]
  180. Theoharides T. C., Bondy P. K., Tsakalos N. D., Askenase P. W. (1982). Differential release of serotonin and histamine from mast cells. Nature 297, 229–231. 10.1038/297229a0 [DOI] [PubMed] [Google Scholar]
  181. Theoharides T. C., Cochrane D. E. (2004). Critical role of mast cells in inflammatory diseases and the effect of acute stress. J. Neuroimmunol. 146, 1–12. 10.1016/j.jneuroim.2003.10.041 [DOI] [PubMed] [Google Scholar]
  182. Theoharides T. C., Conti P., Economu M. (2014). Brain inflammation, neuropsychiatric disorders, and immunoendocrine effects of luteolin. J. Clin. Psychopharmacol. 34, 187–189. 10.1097/JCP.0000000000000084 [DOI] [PubMed] [Google Scholar]
  183. Theoharides T. C., Donelan J. M., Papadopoulou N., Cao J., Kempuraj D., Conti P. (2004a). Mast cells as targets of corticotropin-releasing factor and related peptides. Trends Pharmacol. Sci. 25, 563–568. 10.1016/j.tips.2004.09.007 [DOI] [PubMed] [Google Scholar]
  184. Theoharides T. C., Douglas W. W. (1978). Secretion in mast cells induced by calcium entrapped within phospholipid vesicles. Science 201, 1143–1145. 10.1126/science.684435 [DOI] [PubMed] [Google Scholar]
  185. Theoharides T. C., Doyle R., Francis K., Conti P., Kalogeromitros D. (2008). Novel therapeutic targets for autism. Trends Pharmacol. Sci. 29, 375–382. 10.1016/j.tips.2008.06.002 [DOI] [PubMed] [Google Scholar]
  186. Theoharides T. C., Kempuraj D., Tagen M., Conti P., Kalogeromitros D. (2007). Differential release of mast cell mediators and the pathogenesis of inflammation. Immunol. Rev. 217, 65–78. 10.1111/j.1600-065X.2007.00519.x [DOI] [PubMed] [Google Scholar]
  187. Theoharides T. C., Konstantinidou A. (2007). Corticotropin-releasing hormone and the blood-brain-barrier. Front. Biosci. 12, 1615–1628. 10.2741/2174 [DOI] [PubMed] [Google Scholar]
  188. Theoharides T. C., Petra A. I., Taracanova A., Panagiotidou S., Conti P. (2015c). Targeting IL-33 in autoimmunity and inflammation. JPET 354, 24–31. 10.1124/jpet.114.222505 [DOI] [PubMed] [Google Scholar]
  189. Theoharides T. C., Sismanopoulos N., Delivanis D. A., Zhang B., Hatziagelaki E. E., Kalogeromitros D. (2011a). Mast cells squeeze the heart and stretch the gird: their role in atherosclerosis and obesity. Trends Pharmacol. Sci. 32, 534–542. 10.1016/j.tips.2011.05.005 [DOI] [PubMed] [Google Scholar]
  190. Theoharides T. C., Spanos C. P., Pang X., Alferes L., Ligris K., Letourneau R., et al. (1995). Stress-induced intracranial mast cell degranulation. A corticotropin releasing hormone-mediated effect. Endocrinology 136, 5745–5750. [DOI] [PubMed] [Google Scholar]
  191. Theoharides T. C., Stewart J. M., Panagiotidou S., Melamed I. (2015b). Mast cells, brain inflammation and autism. Eur. J. Pharmacol. [Epub ahead of print]. 10.1016/j.ejphar.2015.03.086 [DOI] [PubMed] [Google Scholar]
  192. Theoharides T. C., Valent P., Akin C. (2015a). Mast cells, mastocytosis and related disorders. New Engl. J. Med. (in press). [DOI] [PubMed] [Google Scholar]
  193. Theoharides T. C., Weinkauf C., Conti P. (2004b). Brain cytokines and neuropsychiatric disorders. J. Clin. Psychopharmacol. 24, 577–581. 10.1097/01.jcp.0000148026.86483.4f [DOI] [PubMed] [Google Scholar]
  194. Theoharides T. C., Zhang B., Conti P. (2011b). Decreased mitochondrial function and increased brain inflammation in bipolar disorder and other neuropsychiatric diseases. J. Clin. Psychopharmacol. 31, 685–687. 10.1097/JCP.0b013e318239c190 [DOI] [PubMed] [Google Scholar]
  195. Theoharides T. C., Zhang B., Kempuraj D., Tagen M., Vasiadi M., Angelidou A., et al. (2010b). IL-33 augments substance P-induced VEGF secretion from human mast cells and is increased in psoriatic skin. Proc. Natl. Acad. Sci. U.S.A. 107, 4448–4453. 10.1073/pnas.1000803107 [DOI] [PMC free article] [PubMed] [Google Scholar]
  196. Thilakarathna S. H., Rupasinghe H. P. (2013). Flavonoid bioavailability and attempts for bioavailability enhancement. Nutrients 5, 3367–3387. 10.3390/nu5093367 [DOI] [PMC free article] [PubMed] [Google Scholar]
  197. Torrealba F., Riveros M. E., Contreras M., Valdes J. L. (2012). Histamine and motivation. Front. Syst. Neurosci. 6:51. 10.3389/fnsys.2012.00051 [DOI] [PMC free article] [PubMed] [Google Scholar]
  198. Tsai F. S., Peng W. H., Wang W. H., Wu C. R., Hsieh C. C., Lin Y. T., et al. (2007). Effects of luteolin on learning acquisition in rats: involvement of the central cholinergic system. Life Sci. 80, 1692–1698. 10.1016/j.lfs.2007.01.055 [DOI] [PubMed] [Google Scholar]
  199. Tsilioni I., Panagiotidou S., Theoharides T. C. (2014). Exosomes in neurologic and psychiatric disorders. Clin. Ther. 36, 882–888. 10.1016/j.clinthera.2014.05.005 [DOI] [PubMed] [Google Scholar]
  200. United Nations Department of Economic Social Affairs Population Division (2015). World Population Prospects:The 2010 Revision. Available online at: http://esa.un.org/wpp/documentation/WPP%202010%20publications.htm [Google Scholar]
  201. Valent P., Akin C., Arock M., Brockow K., Butterfield J. H., Carter M. C., et al. (2012). Definitions, criteria and global classification of mast cell disorders with special reference to mast cell activation syndromes: a consensus proposal. Int. Arch. Allergy Immunol. 157, 215–225. 10.1159/000328760 [DOI] [PMC free article] [PubMed] [Google Scholar]
  202. Vauzour D. (2014). Effect of flavonoids on learning, memory and neurocognitive performance: relevance and potential implications for Alzheimer's disease pathophysiology. J. Sci. Food Agric. 94, 1042–1056. 10.1002/jsfa.6473 [DOI] [PubMed] [Google Scholar]
  203. Verbeek R., Plomp A. C., van Tol E. A., van Noort J. M. (2004). The flavones luteolin and apigenin inhibit in vitro antigen-specific proliferation and interferon-gamma production by murine and human autoimmune T cells. Biochem. Pharmacol. 68, 621–629. 10.1016/j.bcp.2004.05.012 [DOI] [PubMed] [Google Scholar]
  204. Walle T. (2007). Methylation of dietary flavones greatly improves their hepatic metabolic stability and intestinal absorption. Mol. Pharmcol. 4, 826–832. 10.1021/mp700071d [DOI] [PubMed] [Google Scholar]
  205. Wang D. M., Li S. Q., Wu W. L., Zhu X. Y., Wang Y., Yuan H. Y. (2014). Effects of long-term treatment with quercetin on cognition and mitochondrial function in a mouse model of Alzheimer's disease. Neurochem. Res. 39, 1533–1543. 10.1007/s11064-014-1343-x [DOI] [PubMed] [Google Scholar]
  206. Wei G., Hwang L., Tsai C. (2014). Absolute bioavailability, pharmacokinetics and excretion of 5,7,30,40-tetramethoxyflavone in rats. J. Funct. Foods 7, 136–141. 10.1016/j.jff.2013.10.006 [DOI] [Google Scholar]
  207. Weng Z., Patel A. B., Panagiotidou S., Theoharides T. C. (2014). The novel flavone tetramethoxyluteolin is a potent inhibitor of human mast cells. J. Allergy Clin. Immunol. 14, 01574–01577. 10.1016/j.jaci.2014.10.032 [DOI] [PMC free article] [PubMed] [Google Scholar]
  208. Wilhelm M., Silver R., Silverman A. J. (2005). Central nervous system neurons acquire mast cell products via transgranulation. Eur. J. Neurosci. 22, 2238–2248. 10.1111/j.1460-9568.2005.04429.x [DOI] [PMC free article] [PubMed] [Google Scholar]
  209. Xiong Z., Thangavel R., Kempuraj D., Yang E., Zaheer S., Zaheer A. (2014). Alzheimer's disease: evidence for the expression of interleukin-33 and its receptor ST2 in the brain. J. Alzheimers Dis. 40, 297–308. 10.3233/JAD-132081 [DOI] [PMC free article] [PubMed] [Google Scholar]
  210. Xu N., Zhang L., Dong J., Zhang X., Chen Y. G., Bao B., et al. (2014). Low-dose diet supplement of a natural flavonoid, luteolin, ameliorates diet-induced obesity and insulin resistance in mice. Mol. Nutr. Food Res. 58, 1258–1268. 10.1002/mnfr.201300830 [DOI] [PubMed] [Google Scholar]
  211. Xu S. L., Bi C. W., Choi R. C., Zhu K. Y., Miernisha A., Dong T. T., et al. (2013). Flavonoids induce the synthesis and secretion of neurotrophic factors in cultured rat astrocytes: a signaling response mediated by estrogen receptor. Evid. Based Complement Alternat. Med. 2013:127075. 10.1155/2013/127075 [DOI] [PMC free article] [PubMed] [Google Scholar]
  212. Yang C. J., Liu C. L., Sang B., Zhu X. M., Du Y. J. (2015). The combined role of serotonin and interleukin-6 as biomarker for autism. Neuroscience 284, 290–296. 10.1016/j.neuroscience.2014.10.011 [DOI] [PubMed] [Google Scholar]
  213. Yang Y., Oh J. M., Heo P., Shin J. Y., Kong B., Shin J., et al. (2013). Polyphenols differentially inhibit degranulation of distinct subsets of vesicles in mast cells by specific interaction with granule-type-dependent SNARE complexes. Biochem. J. 450, 537–546. 10.1042/BJ20121256 [DOI] [PMC free article] [PubMed] [Google Scholar]
  214. Yap S., Qin C., Woodman O. L. (2010). Effects of resveratrol and flavonols on cardiovascular function: physiological mechanisms. Biofactors 36, 350–359. 10.1002/biof.111 [DOI] [PubMed] [Google Scholar]
  215. Yoo D. Y., Choi J. H., Kim W., Nam S. M., Jung H. Y., Kim J. H., et al. (2013). Effects of luteolin on spatial memory, cell proliferation, and neuroblast differentiation in the hippocampal dentate gyrus in a scopolamine-induced amnesia model. Neurol. Res. 35, 813–820. 10.1179/1743132813Y.0000000217 [DOI] [PubMed] [Google Scholar]
  216. Zhang B., Alysandratos K. D., Angelidou A., Asadi S., Sismanopoulos N., Delivanis D. A., et al. (2011). Human mast cell degranulation and preformed TNF secretion require mitochondrial translocation to exocytosis sites: relevance to atopic dermatitis. J. Allergy Clin. Immunol. 127, 1522–1531. 10.1016/j.jaci.2011.02.005 [DOI] [PMC free article] [PubMed] [Google Scholar]
  217. Zhang B., Asadi S., Weng Z., Sismanopoulos N., Theoharides T. C. (2012a). Stimulated human mast cells secrete mitochondrial components that have autocrine and paracrine inflammatory actions. PLoS ONE 7:e49767. 10.1371/journal.pone.0049767 [DOI] [PMC free article] [PubMed] [Google Scholar]
  218. Zhang B., Weng Z., Sismanopoulos N., Asadi S., Therianou A., Alysandratos K. D., et al. (2012b). Mitochondria distinguish granule-stored from de novo synthesized tumor necrosis factor secretion in human mast cells. Int. Arch. Allergy Immunol. 159, 23–32. 10.1159/000335178 [DOI] [PMC free article] [PubMed] [Google Scholar]
  219. Zhu L. H., Bi W., Qi R. B., Wang H. D., Lu D. X. (2011). Luteolin inhibits microglial inflammation and improves neuron survival against inflammation. Int. J. Neurosci. 121, 329–336. 10.3109/00207454.2011.569040 [DOI] [PubMed] [Google Scholar]
  220. Zhu X., Perry G., Smith M. A., Wang X. (2012). Abnormal mitochondrial dynamics in the pathogenesis of Alzheimer's Disease. J. Alzheimers Dis. 33, S253–S262. 10.3233/JAD-2012-129005 [DOI] [PMC free article] [PubMed] [Google Scholar]
  221. Zhuang X., Xiang X., Grizzle W., Sun D., Zhang S., Axtell R. C., et al. (2011). Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol. Ther. 19, 1769–1779. 10.1038/mt.2011.164 [DOI] [PMC free article] [PubMed] [Google Scholar]
  222. Zlomuzica A., Viggiano D., De Souza Silva M. A., Ishizuka T., Gironi Carnevale U. A., Ruocco L. A., et al. (2008). The histamine H1-receptor mediates the motivational effects of novelty. Eur. J. Neurosci. 27, 1461–1474. 10.1111/j.1460-9568.2008.06115.x [DOI] [PubMed] [Google Scholar]

Articles from Frontiers in Neuroscience are provided here courtesy of Frontiers Media SA

RESOURCES