Abstract
Relatively little progress has been made in understanding the nature of the Reed-Sternberg (RS) cell and its morphologic variants in Hodgkin disease (HD). This is primarily due to the fact that RS cells represent a minute subpopulation within HD lesions. To investigate the clonal origin of RS cells and variants, we studied 27 HD lesions obtained from 11 patients. Using an image analyzer (CAS 200) we were able to demonstrate that CD30-positive RS cells are clonal elements with unique and individualized DNA profiles and that the DNA content of any given patient RS cell population is constant over time and in different pathologic sites. Using 1, 9, 11, and X alpha satellite chromosome probes and interphase cytogenetics, we also demonstrated that RS cells obtained from different tissue samples of the same patient have a unique and often abnormal chromosomal pattern. To definitively prove the hypothesis that CD30-positive RS cells are clonal elements, we investigated the presence of point mutations within p53 gene exons 5 through 9 and found that only a single patient possessed a nonsense p53 somatic point mutation (Arg to His). This same mutation could be identified in all of his available biopsies. Altogether, these findings demonstrate that RS cells and variants in HD are clonal and represent the neoplastic elements of this entity.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anastasi J., Bauer K. D., Variakojis D. DNA aneuploidy in Hodgkin's disease. A multiparameter flow-cytometric analysis with cytologic correlation. Am J Pathol. 1987 Sep;128(3):573–582. [PMC free article] [PubMed] [Google Scholar]
- Bilbe G., Delabie J., Brüggen J., Richener H., Asselbergs F. A., Cerletti N., Sorg C., Odink K., Tarcsay L., Wiesendanger W. Restin: a novel intermediate filament-associated protein highly expressed in the Reed-Sternberg cells of Hodgkin's disease. EMBO J. 1992 Jun;11(6):2103–2113. doi: 10.1002/j.1460-2075.1992.tb05269.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Doglioni C., Pelosio P., Mombello A., Scarpa A., Chilosi M. Immunohistochemical evidence of abnormal expression of the antioncogene-encoded p53 phosphoprotein in Hodgkin's disease and CD30+ anaplastic lymphomas. Hematol Pathol. 1991;5(2):67–73. [PubMed] [Google Scholar]
- Gaidano G., Ballerini P., Gong J. Z., Inghirami G., Neri A., Newcomb E. W., Magrath I. T., Knowles D. M., Dalla-Favera R. p53 mutations in human lymphoid malignancies: association with Burkitt lymphoma and chronic lymphocytic leukemia. Proc Natl Acad Sci U S A. 1991 Jun 15;88(12):5413–5417. doi: 10.1073/pnas.88.12.5413. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gosden J. R., Lawrie S. S., Cooke H. J. A cloned repeated DNA sequence in human chromosome heteromorphisms. Cytogenet Cell Genet. 1981;29(1):32–39. doi: 10.1159/000131549. [DOI] [PubMed] [Google Scholar]
- Gupta R. K., Patel K., Bodmer W. F., Bodmer J. G. Mutation of p53 in primary biopsy material and cell lines from Hodgkin disease. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):2817–2821. doi: 10.1073/pnas.90.7.2817. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haber M. M., Liu J., Knowles D. M., Inghirami G. Determination of the DNA content of the Reed-Sternberg cell of Hodgkin's disease by image analysis. Blood. 1992 Dec 1;80(11):2851–2857. [PubMed] [Google Scholar]
- Inghirami G., Szabolcs M. J., Yee H. T., Corradini P., Cesarman E., Knowles D. M. Detection of immunoglobulin gene rearrangement of B cell non-Hodgkin's lymphomas and leukemias in fresh, unfixed and formalin-fixed, paraffin-embedded tissue by polymerase chain reaction. Lab Invest. 1993 Jun;68(6):746–757. [PubMed] [Google Scholar]
- Joensuu H., Klemi P. J., Korkeila E. Prognostic value of DNA ploidy and proliferative activity in Hodgkin's disease. Am J Clin Pathol. 1988 Dec;90(6):670–673. doi: 10.1093/ajcp/90.6.670. [DOI] [PubMed] [Google Scholar]
- Mayor S., Presley J. F., Maxfield F. R. Sorting of membrane components from endosomes and subsequent recycling to the cell surface occurs by a bulk flow process. J Cell Biol. 1993 Jun;121(6):1257–1269. doi: 10.1083/jcb.121.6.1257. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moyzis R. K., Albright K. L., Bartholdi M. F., Cram L. S., Deaven L. L., Hildebrand C. E., Joste N. E., Longmire J. L., Meyne J., Schwarzacher-Robinson T. Human chromosome-specific repetitive DNA sequences: novel markers for genetic analysis. Chromosoma. 1987;95(6):375–386. doi: 10.1007/BF00333988. [DOI] [PubMed] [Google Scholar]
- Thangavelu M., Le Beau M. M. Chromosomal abnormalities in Hodgkin's disease. Hematol Oncol Clin North Am. 1989 Jun;3(2):221–236. [PubMed] [Google Scholar]
- Tilly H., Bastard C., Delastre T., Duval C., Bizet M., Lenormand B., Daucé J. P., Monconduit M., Piguet H. Cytogenetic studies in untreated Hodgkin's disease. Blood. 1991 Mar 15;77(6):1298–1304. [PubMed] [Google Scholar]
- Tkachuk D. C., Westbrook C. A., Andreeff M., Donlon T. A., Cleary M. L., Suryanarayan K., Homge M., Redner A., Gray J., Pinkel D. Detection of bcr-abl fusion in chronic myelogeneous leukemia by in situ hybridization. Science. 1990 Oct 26;250(4980):559–562. doi: 10.1126/science.2237408. [DOI] [PubMed] [Google Scholar]
- Trümper L. H., Brady G., Bagg A., Gray D., Loke S. L., Griesser H., Wagman R., Braziel R., Gascoyne R. D., Vicini S. Single-cell analysis of Hodgkin and Reed-Sternberg cells: molecular heterogeneity of gene expression and p53 mutations. Blood. 1993 Jun 1;81(11):3097–3115. [PubMed] [Google Scholar]
- Waye J. S., Creeper L. A., Willard H. F. Organization and evolution of alpha satellite DNA from human chromosome 11. Chromosoma. 1987;95(3):182–188. doi: 10.1007/BF00330349. [DOI] [PubMed] [Google Scholar]
- Waye J. S., Willard H. F. Chromosome-specific alpha satellite DNA: nucleotide sequence analysis of the 2.0 kilobasepair repeat from the human X chromosome. Nucleic Acids Res. 1985 Apr 25;13(8):2731–2743. doi: 10.1093/nar/13.8.2731. [DOI] [PMC free article] [PubMed] [Google Scholar]