Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1994 Oct 25;91(22):10360–10364. doi: 10.1073/pnas.91.22.10360

Femtosecond coherent transient infrared spectroscopy of reaction centers from Rhodobacter sphaeroides.

S Maiti 1, G C Walker 1, B R Cowen 1, R Pippenger 1, C C Moser 1, P L Dutton 1, R M Hochstrasser 1
PMCID: PMC45019  PMID: 7937956

Abstract

Protein and cofactor vibrational dynamics associated with photoexcitation and charge separation in the photosynthetic reaction center were investigated with femto-second (300-400 fs) time-resolved infrared (1560-1960 cm-1) spectroscopy. The experiments are in the coherent transient limit where the quantum uncertainty principle governs the evolution of the protein vibrational changes. No significant protein relaxation accompanies charge separation, although the electric field resulting from charge separation modifies the polypeptide carbonyl spectra. The potential energy surfaces of the "special pair" P and the photoexcited singlet state P* and environmental perturbations on them are similar as judged from coherence transfer measurements. The vibrational dephasing time of P* modes in this region is 600 fs. A subpicosecond transient at 1665 cm-1 was found to have the kinetics expected for a sequential electron transfer process. Kinetic signatures of all other transient intermediates, P, P*, and P+, participating in the primary steps of photosynthesis were identified in the difference infrared spectra.

Full text

PDF
10362

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anni H., Vanderkooi J. M., Sharp K. A., Yonetani T., Hopkins S. C., Herenyi L., Fidy J. Electric field and conformational effects of cytochrome c and solvent on cytochrome c peroxidase studied by high-resolution fluorescence spectroscopy. Biochemistry. 1994 Mar 29;33(12):3475–3486. doi: 10.1021/bi00178a003. [DOI] [PubMed] [Google Scholar]
  2. Arlt T., Schmidt S., Kaiser W., Lauterwasser C., Meyer M., Scheer H., Zinth W. The accessory bacteriochlorophyll: a real electron carrier in primary photosynthesis. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11757–11761. doi: 10.1073/pnas.90.24.11757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Breton J., Nabedryk E., Parson W. W. A new infrared electronic transition of the oxidized primary electron donor in bacterial reaction centers: a way to assess resonance interactions between the bacteriochlorophylls. Biochemistry. 1992 Aug 25;31(33):7503–7510. doi: 10.1021/bi00148a010. [DOI] [PubMed] [Google Scholar]
  4. Buchanan S., Michel H., Gerwert K. Light-induced charge separation in Rhodopseudomonas viridis reaction centers monitored by Fourier-transform infrared difference spectroscopy: the quinone vibrations. Biochemistry. 1992 Feb 11;31(5):1314–1322. doi: 10.1021/bi00120a006. [DOI] [PubMed] [Google Scholar]
  5. Chang C. H., Tiede D., Tang J., Smith U., Norris J., Schiffer M. Structure of Rhodopseudomonas sphaeroides R-26 reaction center. FEBS Lett. 1986 Sep 1;205(1):82–86. doi: 10.1016/0014-5793(86)80870-5. [DOI] [PubMed] [Google Scholar]
  6. DeVault D., Chance B. Studies of photosynthesis using a pulsed laser. I. Temperature dependence of cytochrome oxidation rate in chromatium. Evidence for tunneling. Biophys J. 1966 Nov;6(6):825–847. doi: 10.1016/s0006-3495(66)86698-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Deisenhofer J., Epp O., Miki K., Huber R., Michel H. X-ray structure analysis of a membrane protein complex. Electron density map at 3 A resolution and a model of the chromophores of the photosynthetic reaction center from Rhodopseudomonas viridis. J Mol Biol. 1984 Dec 5;180(2):385–398. doi: 10.1016/s0022-2836(84)80011-x. [DOI] [PubMed] [Google Scholar]
  8. Du M., Rosenthal S. J., Xie X., DiMagno T. J., Schmidt M., Hanson D. K., Schiffer M., Norris J. R., Fleming G. R. Femtosecond spontaneous-emission studies of reaction centers from photosynthetic bacteria. Proc Natl Acad Sci U S A. 1992 Sep 15;89(18):8517–8521. doi: 10.1073/pnas.89.18.8517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fischer M. R., de Groot H. J., Raap J., Winkel C., Hoff A. J., Lugtenburg J. 13C magic angle spinning NMR study of the light-induced and temperature-dependent changes in Rhodobacter sphaeroides R26 reaction centers enriched in [4'-13C]tyrosine. Biochemistry. 1992 Nov 17;31(45):11038–11049. doi: 10.1021/bi00160a013. [DOI] [PubMed] [Google Scholar]
  10. Kirmaier C., Holten D. An assessment of the mechanism of initial electron transfer in bacterial reaction centers. Biochemistry. 1991 Jan 22;30(3):609–613. doi: 10.1021/bi00217a003. [DOI] [PubMed] [Google Scholar]
  11. Kirmaier C., Holten D. Evidence that a distribution of bacterial reaction centers underlies the temperature and detection-wavelength dependence of the rates of the primary electron-transfer reactions. Proc Natl Acad Sci U S A. 1990 May;87(9):3552–3556. doi: 10.1073/pnas.87.9.3552. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kita M., Sone H., Hayashi A., Fujie T., Shimomura T., Okada T., Mori T. [A case report of pregnancy associated with Crohn's disease maintained on enteral hyperalimentation]. Nihon Sanka Fujinka Gakkai Zasshi. 1991 Nov;43(11):1583–1586. [PubMed] [Google Scholar]
  13. Krimm S., Bandekar J. Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins. Adv Protein Chem. 1986;38:181–364. doi: 10.1016/s0065-3233(08)60528-8. [DOI] [PubMed] [Google Scholar]
  14. Lockhart D. J., Boxer S. G. Stark effect spectroscopy of Rhodobacter sphaeroides and Rhodopseudomonas viridis reaction centers. Proc Natl Acad Sci U S A. 1988 Jan;85(1):107–111. doi: 10.1073/pnas.85.1.107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lösche M., Feher G., Okamura M. Y. The Stark effect in reaction centers from Rhodobacter sphaeroides R-26 and Rhodopseudomonas viridis. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7537–7541. doi: 10.1073/pnas.84.21.7537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Maiti S., Cowen B. R., Diller R., Iannone M., Moser C. C., Dutton P. L., Hochstrasser R. M. Picosecond infrared studies of the dynamics of the photosynthetic reaction center. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):5247–5251. doi: 10.1073/pnas.90.11.5247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mäntele W. G., Wollenweber A. M., Nabedryk E., Breton J. Infrared spectroelectrochemistry of bacteriochlorophylls and bacteriopheophytins: Implications for the binding of the pigments in the reaction center from photosynthetic bacteria. Proc Natl Acad Sci U S A. 1988 Nov;85(22):8468–8472. doi: 10.1073/pnas.85.22.8468. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Yeates T. O., Komiya H., Chirino A., Rees D. C., Allen J. P., Feher G. Structure of the reaction center from Rhodobacter sphaeroides R-26 and 2.4.1: protein-cofactor (bacteriochlorophyll, bacteriopheophytin, and carotenoid) interactions. Proc Natl Acad Sci U S A. 1988 Nov;85(21):7993–7997. doi: 10.1073/pnas.85.21.7993. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES