Skip to main content
Neurotherapeutics logoLink to Neurotherapeutics
. 2008 Oct 1;5(4):542–547. doi: 10.1016/j.nurt.2008.07.003

Therapeutic strategies in congenital myasthenic syndromes

Ulrike Schara 1,, Hanns Lochmüller 2
PMCID: PMC4514706  PMID: 19019305

Summary

Congenital myasthenic syndromes (CMS) are classified in terms of the located defect: presynaptic, postsynaptic, and synaptic. They are inherited disorders caused by various genetic defects, all but the slow-channel CMS by recessive inheritance. To date, 10 different CMS are known and further CMS subtypes and their genetic cause may be disclosed by future investigations. Prognosis in CMS is variable and largely depends on the pathophysiological and genetic defect. Subtypes showing progression and life-threatening crises with apneas are generally less favorable than others. Therapeutic agents used in CMS depend on the underlying defect and include acetylcholinesterase inhibitor, 3,4-diaminopyridine, quinidine sulfate, fluoxetine, acetazolamide, and ephedrine. Although there are no double-blind, placebo-controlled clinical trials for CMS, several drugs have shown convincingly positive clinical effects. It is therefore necessary to start a rational therapy regime as early as possible. In most CMS, however, mild and severe clinical courses are reported, which makes assessment on an individual basis necessary. This review emphasizes therapeutic strategies in CMS.

Key Words: Congenital myasthenic syndrome, therapy, acetylcholinesterase inhibitor, 3;4-diaminopyridine (3;4-DAP), quinidine sulfate, fluoxetine, acetazolamide, ephedrine

References

  • 1.Beeson D, Hantaï D, Lochmüller H, Engel AG. 126th International Workshop: Congenital Myasthenic Syndromes, 24–26 September 2004, Naarden, The Netherlands. Neuromuscul Disord. 2005;15:498–512. doi: 10.1016/j.nmd.2005.05.001. [DOI] [PubMed] [Google Scholar]
  • 2.Engel AG, Ohno K, Sine SM. Congenital myasthenic syndromes. In: Engel AG, Franzini-Armstrong C, editors. Myology. 3rd ed. New York: McGraw-Hill; 2004. pp. 1801–1844. [Google Scholar]
  • 3.Engel AG, Sine SM. Current understanding of congenital myasthenic syndromes. Curr Opin Pharmacol. 2005;5:308–321. doi: 10.1016/j.coph.2004.12.007. [DOI] [PubMed] [Google Scholar]
  • 4.Engel AG. The therapy of congenital myasthenic syndromes. Neurotherapeutics. 2007;4:252–257. doi: 10.1016/j.nurt.2007.01.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Croxen R, Hatton C, Shelley C, et al. Recessive inheritance and variable penetrance of slow-channel congenital myasthenic syndromes. Neurology. 2002;59:162–168. doi: 10.1212/WNL.59.2.162. [DOI] [PubMed] [Google Scholar]
  • 6.Ohno K, Tsujino A, Brengman JM, et al. Choline acetyltransferase mutations cause myasthenic syndrome associated with episodic apnea in humans. Proc Natl Acad Sci U S A. 2001;98:2017–2022. doi: 10.1073/pnas.98.4.2017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Ohno K, Brengman JM, Tsujino A, Engel AG. Human endplate acetylcholinesterase deficiency caused by mutations in the collagen-like tail subunit (ColQ) of the asymmetric enzyme. Proc Natl Acad Sci U S A. 1998;95:9654–9659. doi: 10.1073/pnas.95.16.9654. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Donger C, Krejci E, Serradell AP, et al. Mutation in the human acetylcholinesterase-associated collagen gene, COLQ, is responsible for congenital myasthenic syndrome with end-plate acetylcholinesterase deficiency (Type Ic) Am J Hum Genet. 1998;63:967–75. doi: 10.1086/302059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Middleton L, Ohno K, Christodoulou K, et al. Chromosome 17p-linked myasthenias stem from defects in the acetylcholine receptor ε-subunit gene. Neurology. 1999;53:1076–1082. doi: 10.1212/WNL.53.5.1076. [DOI] [PubMed] [Google Scholar]
  • 10.Engel AG, Ohno K, Milone M, et al. New mutations in acetylcholine receptor subunit genes reveal heterogeneity in the slow-channel congenital myasthenic syndrome. Hum Mol Genet. 1996;5:1217–1227. doi: 10.1093/hmg/5.9.1217. [DOI] [PubMed] [Google Scholar]
  • 11.Ohno K, Engel AG, Shen XM, et al. Rapsyn mutations in humans cause endplate acetylcholine receptor deficiency and myasthenic syndrome. Am J Hum Genet. 2002;70:875–885. doi: 10.1086/339465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Chevessier F, Faraut B, Ravel-Chapuis A, et al. MUSK, a new target for mutations causing congenital myasthenic syndrome. Hum Mol Genet. 2004;13:3229–3240. doi: 10.1093/hmg/ddh333. [DOI] [PubMed] [Google Scholar]
  • 13.Beeson D, Higuchi O, Palace J, et al. Dok-7 mutations underlie a neuromuscular junction synaptopathy. Science. 2006;3:1975–1978. doi: 10.1126/science.1130837. [DOI] [PubMed] [Google Scholar]
  • 14.Tsujino A, Maertens C, Ohno K, et al. Myasthenie syndrome caused by mutation of the SCN4A sodium channel. Proc Natl Acad Sci U S A. 2003;100:7377–7382. doi: 10.1073/pnas.1230273100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Hantaï D, Richard P, Koenig J, Eymard B. Congenital myasthenic syndromes. Curr Opin Neurol. 2004;17:539–551. doi: 10.1097/00019052-200410000-00004. [DOI] [PubMed] [Google Scholar]
  • 16.Gurnett CA, Bodnar JA, Neil J, Connolly AM. Congenital myasthenic syndrome: presentation, electrodiagnosis, and muscle biopsy. J Child Neurol. 2004;19:175–182. [PubMed] [Google Scholar]
  • 17.Bestue-Cardiel M, Sáenz de Cabezón-Alvarez A, Capablo-Liesa JL, et al. Congenital endplate acetylcholinesterase deficiency responsive to ephedrine. Neurology. 2005;65:144–146. doi: 10.1212/01.wnl.0000167132.35865.31. [DOI] [PubMed] [Google Scholar]
  • 18.Schara U, Deschauer M, Wendt M, et al. Therapeutic effects of ephedrine in congenital myasthenic syndrome due to DOK7 mutations. Neuromuscul Disord. 2007;17:818–819. doi: 10.1016/j.nmd.2009.09.008. [DOI] [PubMed] [Google Scholar]
  • 19.Schara U, Christen HJ, Hietala M, et al. Long-term follow-up in patients with congenital myasthenic syndrome due to CHAT mutations. Neuromuscul Disord. 2007;17:818–818. [Google Scholar]
  • 20.Harper CM, Fukodome T, Engel AG. Treatment of slow-channel congenital myasthenic syndrome with fluoxetine. Neurology. 2003;60:1710–1713. doi: 10.1212/01.WNL.0000061483.11417.1B. [DOI] [PubMed] [Google Scholar]
  • 21.Colomer J, Müller JS, Vernet A, et al. Long-term improvement of slow-channel congenital myasthenic syndrome with fluoxetine. Neuromuscul Disord. 2006;16:329–333. doi: 10.1016/j.nmd.2006.02.009. [DOI] [PubMed] [Google Scholar]
  • 22.Palace J, Wiles CM, Newsom-Davis J. 3,4-Diaminopyridine in the treatment of congenital (hereditary) myasthenia. J Neurol Neurosurg Psychiatry. 1991;54:1069–1072. doi: 10.1136/jnnp.54.12.1069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Sieb J, Engel AG. Ephedrine: effects on neuromuscular transmission. Brain Res. 1993;623:167–171. doi: 10.1016/0006-8993(93)90025-I. [DOI] [PubMed] [Google Scholar]
  • 24.Mihaylova V, Müller JS, Vilchez JJ, et al. Clinical and molecular genetic findings in COLQ-mutant congenital myasthenic syndromes. Brain. 2008;131:747–759. doi: 10.1093/brain/awm325. [DOI] [PubMed] [Google Scholar]
  • 25.Miller JB, Girgenrath M. The role of apoptosis in neuromuscular diseases and prospects for anti-apoptosis therapy. Trends Mol Med. 2006;12:279–286. doi: 10.1016/j.molmed.2006.04.003. [DOI] [PubMed] [Google Scholar]
  • 26.Vohra BPS, Groshong JS, Zayas R, Wollmann RL, Gomez CM. Activation of apoptotic pathways at muscle fiber synapses is circumscribed and reversible in a slow-channel syndrome model. Neurobiol Dis. 2006;23:462–470. doi: 10.1016/j.nbd.2006.04.018. [DOI] [PubMed] [Google Scholar]
  • 27.Zayas R, Groshong JS, Gomez CM. Inositol-1,4,5-triphosphate receptors mediate activity-induced synaptic Ca2+ signals in muscle fibers and Ca2+ overload in slow-channel syndrome. Cell Calcium. 2007;41:343–352. doi: 10.1016/j.ceca.2006.07.007. [DOI] [PubMed] [Google Scholar]
  • 28.Müller JS, Baumeister SK, Rasic VM, et al. Impaired receptor clustering in congenital myasthenic syndrome with novel RAPSN mutations. Neurology. 2006;67:1159–1164. doi: 10.1212/01.wnl.0000233837.79459.40. [DOI] [PubMed] [Google Scholar]
  • 29.Müller JS, Baumeister SK, Schara U, et al. CHRND mutation causes a congenital myasthenic syndrome by impairing co-clustering of the acetylcholine receptor with rapsyn. Brain. 2006;129:2784–2793. doi: 10.1093/brain/awl188. [DOI] [PubMed] [Google Scholar]
  • 30.Slater CR, Fawcett PRW, Walls TJ, et al. Pre- and post-synaptic abnormalities associated with impaired neuromuscular transmission in a group of patients with ‘limb-girdle myasthenia.’. Brain. 2006;129:2061–2076. doi: 10.1093/brain/awl200. [DOI] [PubMed] [Google Scholar]

Articles from Neurotherapeutics are provided here courtesy of Elsevier

RESOURCES