Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1994 Nov 8;91(23):11143–11147. doi: 10.1073/pnas.91.23.11143

The replication terminator protein of the gram-positive bacterium Bacillus subtilis functions as a polar contrahelicase in gram-negative Escherichia coli.

S Kaul 1, B K Mohanty 1, T Sahoo 1, I Patel 1, S A Khan 1, D Bastia 1
PMCID: PMC45183  PMID: 7972025

Abstract

The replication terminator protein (RTP) of Bacillus subtilis is a dimer with a monomeric molecular mass of 14.5 kDa. The protein terminates DNA replication at a specific binding site. Although the protein has been crystallized and its crystal structure has been solved, the lack of an in vitro replication system in B. subtilis has been a serious impediment to the analysis of the mechanism of action of this protein. We have discovered that the protein is functional in the Gram-negative bacterium Escherichia coli in vivo and in vitro. RTP blocked replication forks initiated from a ColE1 replication origin at the cognate DNA-binding site (BS3) in a polar mode. The protein did not block rolling circle replication initiated from the pT181 origin in cell extracts of Staphylococcus aureus. RTP antagonized the helicase activity of DnaB but not that of helicase II of E. coli. Thus, RTP functioned as a polar contrahelicase blocking a helicase that participates in symmetric DNA replication but it did not impede rolling circle replication nor the action of a helicase involved in DNA repair.

Full text

PDF
11147

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bedrosian C. L., Bastia D. Escherichia coli replication terminator protein impedes simian virus 40 (SV40) DNA replication fork movement and SV40 large tumor antigen helicase activity in vitro at a prokaryotic terminus sequence. Proc Natl Acad Sci U S A. 1991 Apr 1;88(7):2618–2622. doi: 10.1073/pnas.88.7.2618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Birch P., Khan S. A. Replication of single-stranded plasmid pT181 DNA in vitro. Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):290–294. doi: 10.1073/pnas.89.1.290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brewer B. J., Fangman W. L. A replication fork barrier at the 3' end of yeast ribosomal RNA genes. Cell. 1988 Nov 18;55(4):637–643. doi: 10.1016/0092-8674(88)90222-x. [DOI] [PubMed] [Google Scholar]
  4. Brewer B. J., Fangman W. L. The localization of replication origins on ARS plasmids in S. cerevisiae. Cell. 1987 Nov 6;51(3):463–471. doi: 10.1016/0092-8674(87)90642-8. [DOI] [PubMed] [Google Scholar]
  5. Brewer B. J. When polymerases collide: replication and the transcriptional organization of the E. coli chromosome. Cell. 1988 Jun 3;53(5):679–686. doi: 10.1016/0092-8674(88)90086-4. [DOI] [PubMed] [Google Scholar]
  6. Bruand C., Ehrlich S. D., Jannière L. Unidirectional theta replication of the structurally stable Enterococcus faecalis plasmid pAM beta 1. EMBO J. 1991 Aug;10(8):2171–2177. doi: 10.1002/j.1460-2075.1991.tb07752.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dasgupta S., Bernander R., Nordström K. In vivo effect of the tus mutation on cell division in an Escherichia coli strain where chromosome replication is under the control of plasmid R1. Res Microbiol. 1991 Feb-Apr;142(2-3):177–180. doi: 10.1016/0923-2508(91)90027-8. [DOI] [PubMed] [Google Scholar]
  8. Gahn T. A., Schildkraut C. L. The Epstein-Barr virus origin of plasmid replication, oriP, contains both the initiation and termination sites of DNA replication. Cell. 1989 Aug 11;58(3):527–535. doi: 10.1016/0092-8674(89)90433-9. [DOI] [PubMed] [Google Scholar]
  9. Henckes G., Harper F., Levine A., Vannier F., Séror S. J. Overreplication of the origin region in the dnaB37 mutant of Bacillus subtilis: postinitiation control of chromosomal replication. Proc Natl Acad Sci U S A. 1989 Nov;86(22):8660–8664. doi: 10.1073/pnas.86.22.8660. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hidaka M., Akiyama M., Horiuchi T. A consensus sequence of three DNA replication terminus sites on the E. coli chromosome is highly homologous to the terR sites of the R6K plasmid. Cell. 1988 Nov 4;55(3):467–475. doi: 10.1016/0092-8674(88)90033-5. [DOI] [PubMed] [Google Scholar]
  11. Hill T. M., Tecklenburg M. L., Pelletier A. J., Kuempel P. L. tus, the trans-acting gene required for termination of DNA replication in Escherichia coli, encodes a DNA-binding protein. Proc Natl Acad Sci U S A. 1989 Mar;86(5):1593–1597. doi: 10.1073/pnas.86.5.1593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hoshino T., McKenzie T., Schmidt S., Tanaka T., Sueoka N. Nucleotide sequence of Bacillus subtilis dnaB: a gene essential for DNA replication initiation and membrane attachment. Proc Natl Acad Sci U S A. 1987 Feb;84(3):653–657. doi: 10.1073/pnas.84.3.653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Khatri G. S., MacAllister T., Sista P. R., Bastia D. The replication terminator protein of E. coli is a DNA sequence-specific contra-helicase. Cell. 1989 Nov 17;59(4):667–674. doi: 10.1016/0092-8674(89)90012-3. [DOI] [PubMed] [Google Scholar]
  14. Koepsel R. R., Murray R. W., Rosenblum W. D., Khan S. A. Purification of pT181-encoded repC protein required for the initiation of plasmid replication. J Biol Chem. 1985 Jul 15;260(14):8571–8577. [PubMed] [Google Scholar]
  15. LeBowitz J. H., McMacken R. The Escherichia coli dnaB replication protein is a DNA helicase. J Biol Chem. 1986 Apr 5;261(10):4738–4748. [PubMed] [Google Scholar]
  16. Lee E. H., Kornberg A., Hidaka M., Kobayashi T., Horiuchi T. Escherichia coli replication termination protein impedes the action of helicases. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9104–9108. doi: 10.1073/pnas.86.23.9104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Levine A., Vannier F., Dehbi M., Henckes G., Séror S. J. The stringent response blocks DNA replication outside the ori region in Bacillus subtilis and at the origin in Escherichia coli. J Mol Biol. 1991 Jun 20;219(4):605–613. doi: 10.1016/0022-2836(91)90657-r. [DOI] [PubMed] [Google Scholar]
  18. Lewis P. J., Ralston G. B., Christopherson R. I., Wake R. G. Identification of the replication terminator protein binding sites in the terminus region of the Bacillus subtilis chromosome and stoichiometry of the binding. J Mol Biol. 1990 Jul 5;214(1):73–84. doi: 10.1016/0022-2836(90)90147-E. [DOI] [PubMed] [Google Scholar]
  19. Lewis P. J., Smith M. T., Wake R. G. A protein involved in termination of chromosome replication in Bacillus subtilis binds specifically to the terC site. J Bacteriol. 1989 Jun;171(6):3564–3567. doi: 10.1128/jb.171.6.3564-3567.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lewis P. J., Wake R. G. DNA and protein sequence conservation at the replication terminus in Bacillus subtilis 168 and W23. J Bacteriol. 1989 Mar;171(3):1402–1408. doi: 10.1128/jb.171.3.1402-1408.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Linskens M. H., Huberman J. A. Organization of replication of ribosomal DNA in Saccharomyces cerevisiae. Mol Cell Biol. 1988 Nov;8(11):4927–4935. doi: 10.1128/mcb.8.11.4927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. MacAllister T., Khatri G. S., Bastia D. Sequence-specific and polarized replication termination in vitro: complementation of extracts of tus- Escherichia coli by purified Ter protein and analysis of termination intermediates. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2828–2832. doi: 10.1073/pnas.87.7.2828. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Matson S. W., Kaiser-Rogers K. A. DNA helicases. Annu Rev Biochem. 1990;59:289–329. doi: 10.1146/annurev.bi.59.070190.001445. [DOI] [PubMed] [Google Scholar]
  24. Mehta P. P., Bussiere D. E., Hoffman D. W., Bastia D., White S. W. Crystallization and preliminary structural analysis of the replication terminator protein of Bacillus subtilis. J Biol Chem. 1992 Sep 15;267(26):18885–18889. [PubMed] [Google Scholar]
  25. Mendelson N. H., Gross J. D. Characterization of a temperature-sensitive mutant of Bacillus subtilis defective in deoxyribonucleic acid replication. J Bacteriol. 1967 Nov;94(5):1603–1608. doi: 10.1128/jb.94.5.1603-1608.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Moriya S., Ogasawara N., Yoshikawa H. Structure and function of the region of the replication origin of the Bacillus subtilis chromosome. III. Nucleotide sequence of some 10,000 base pairs in the origin region. Nucleic Acids Res. 1985 Apr 11;13(7):2251–2265. doi: 10.1093/nar/13.7.2251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Murray R. W., Koepsel R. R., Khan S. A. Synthesis of single-stranded plasmid pT181 DNA in vitro. Initiation and termination of DNA replication. J Biol Chem. 1989 Jan 15;264(2):1051–1057. [PubMed] [Google Scholar]
  28. Nordström K., Bernander R., Dasgupta S. Analysis of the bacterial cell cycle using strains in which chromosome replication is controlled by plasmid R1. Res Microbiol. 1991 Feb-Apr;142(2-3):181–188. doi: 10.1016/0923-2508(91)90028-9. [DOI] [PubMed] [Google Scholar]
  29. Sista P. R., Hutchinson C. A., 3rd, Bastia D. DNA-protein interaction at the replication termini of plasmid R6K. Genes Dev. 1991 Jan;5(1):74–82. doi: 10.1101/gad.5.1.74. [DOI] [PubMed] [Google Scholar]
  30. Sista P. R., Mukherjee S., Patel P., Khatri G. S., Bastia D. A host-encoded DNA-binding protein promotes termination of plasmid replication at a sequence-specific replication terminus. Proc Natl Acad Sci U S A. 1989 May;86(9):3026–3030. doi: 10.1073/pnas.86.9.3026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Smith M. T., Wake R. G. Definition and polarity of action of DNA replication terminators in Bacillus subtilis. J Mol Biol. 1992 Oct 5;227(3):648–657. doi: 10.1016/0022-2836(92)90214-5. [DOI] [PubMed] [Google Scholar]
  32. Sueoka N., Quinn W. G. Membrane attachment of the chromosome replication origin in Bacillus subtilis. Cold Spring Harb Symp Quant Biol. 1968;33:695–705. doi: 10.1101/sqb.1968.033.01.078. [DOI] [PubMed] [Google Scholar]
  33. Wang L. F., Price C. W., Doi R. H. Bacillus subtilis dnaE encodes a protein homologous to DNA primase of Escherichia coli. J Biol Chem. 1985 Mar 25;260(6):3368–3372. [PubMed] [Google Scholar]
  34. White K., Sueoka N. Temperature-sensitive DNA synthesis mutants of Bacillus subtilis--appendix: theory of density transfer for symmetric chromosome replication. Genetics. 1973 Feb;73(2):185–214. doi: 10.1093/genetics/73.2.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. YOSHIKAWA H., SUEOKA N. Sequential replication of Bacillus subtilis chromosome. I. Comparison of marker frequencies in exponential and stationary growth phases. Proc Natl Acad Sci U S A. 1963 Apr;49:559–566. doi: 10.1073/pnas.49.4.559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. YOSHIKAWA H., SUEOKA N. Sequential replication of the Bacillus subtilis chromosome. II. Isotopic transfer experiments. Proc Natl Acad Sci U S A. 1963 Jun;49:806–813. doi: 10.1073/pnas.49.6.806. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES