Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jun 27;71(Pt 7):o518. doi: 10.1107/S2056989015011251

Crystal structure of 4α-hy­droxy-5α,8β(H)-eudesm-7(11)-en-8,12-olide monohydrate

Qiang-Qiang Lu a, Xin-Wei Shi a,*, Xing-Ke Yang b
PMCID: PMC4518932  PMID: 26279940

Abstract

The title compound, C15H22O3·H2O, is a natural producr isolated from Chloranthus japonicus, which is a eudesmane sesquiterpenoid. The two trans-fused six-membered rings have chair confomations. In the crystal, O—H⋯O hydrogen bonds link the components into corrugated layers parallel to the bc plane. There are C—H⋯O inter­actions present within and between the layers.

Keywords: crystal structure, eudesmane sesquiterpenoid, hydrogen bonds, Chloranthus japonicus

Related literature  

For the products isolated from the genus Chloranthus, see: Xiao et al. (2010); Sun et al. (2012). For the crystal structure of the related compound 6β-hy­droxy­eremophil-7(11)-en-8β,12-olide, see: Su et al. (2011).graphic file with name e-71-0o518-scheme1.jpg

Experimental  

Crystal data  

  • C15H22O3·H2O

  • M r = 268.34

  • Monoclinic, Inline graphic

  • a = 10.2495 (2) Å

  • b = 7.1061 (1) Å

  • c = 10.5275 (2) Å

  • β = 100.026 (1)°

  • V = 755.05 (2) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.68 mm−1

  • T = 298 K

  • 0.40 × 0.40 × 0.30 mm

Data collection  

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002) T min = 0.772, T max = 0.821

  • 3081 measured reflections

  • 1339 independent reflections

  • 1303 reflections with I > 2σ(I)

  • R int = 0.018

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.054

  • wR(F 2) = 0.130

  • S = 1.14

  • 1339 reflections

  • 174 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL; software used to prepare material for publication: ORTEP (Johnson & Burnett, 1996).

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989015011251/cv5488sup1.cif

e-71-0o518-sup1.cif (19KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015011251/cv5488Isup2.hkl

e-71-0o518-Isup2.hkl (67.4KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015011251/cv5488Isup4.cdx

. DOI: 10.1107/S2056989015011251/cv5488fig1.tif

Mol­ecular structure of the title compound showing the atomic numbering and 40% probability displacement ellipsoids.

. DOI: 10.1107/S2056989015011251/cv5488fig2.tif

A portion of the crystal packing showing O—H⋯O hydrogen bonds as dashed lines.

CCDC reference: 1405865

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
C5H5O4i 0.98 2.63 3.407(3) 136
C8H8O3ii 0.98 2.64 3.308(4) 126
O1H1O4i 0.82 1.91 2.718(3) 169
O4H4WAO3ii 0.83 2.05 2.850(3) 162
O4H4WBO1iii 0.86 1.94 2.764(3) 159

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant No. 31200257), The Overall Science and Technology Innovation program of Shaanxi Province (grant No. 2012 KTCL02–07) and the West Light Foundation of The Chinese Academy of Sciences (grant No. 2012DF05).

supplementary crystallographic information

S1. Comment

Chloranthus japonicus (Chloranthaceae,"yin-xian-cao"in chinese) is mainly distributed in the east of Asia and traditionally used as Chinese herbal medicine in the treatment of fractures, carbuncles, trauma, and rheumatism. In our current phytochemical investigation, the title compound - an eudesmane sesquiterpenoid, was isolated from the whole plant of C. japonicus for the first time.The compound was identified by NMR spectroscopic data, which were also elucidated by comparing with the literature data (Xiao et al., 2010). Herein, we report its crystal structure.

The main molecule of the title compound consists of a fused three-ring system (Fig.1). The two methyl groups attached to C4 and C10 and the H atom at C8 are all in the axial position and assigned β-configuration, whereas, the hy­droxy group at C4 site has α-orientation.

In the crystal, inter­molecular O—H···O hydrogen bonds (Table 1, Fig. 2) link all moeties into corrugated layers parallel to bc plane, and weak C—H···O inter­actions (Table 1) consolidate further the crystal packing.

S2. Experimental

The title compound was isolated from the whole plant of C. japonicus following the known procedure (Xiao et al., 2010).

S3. Refinement

The hydrogen atoms were placed in calculated positions and refined as riding with Uiso(H) =1.2 Ueq (C) or 1.5 Ueq(C, O). The positions of methyl and hy­droxy hydrogens were rotationally optimized.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound showing the atomic numbering and 40% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

A portion of the crystal packing showing O—H···O hydrogen bonds as dashed lines.

Crystal data

C15H22O3·H2O F(000) = 292
Mr = 268.34 Dx = 1.180 Mg m3
Monoclinic, P21 Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2yb Cell parameters from 2390 reflections
a = 10.2495 (2) Å θ = 4.3–66.9°
b = 7.1061 (1) Å µ = 0.68 mm1
c = 10.5275 (2) Å T = 298 K
β = 100.026 (1)° Block, colourless
V = 755.05 (2) Å3 0.40 × 0.40 × 0.30 mm
Z = 2

Data collection

Bruker SMART CCD area-detector diffractometer 1339 independent reflections
Radiation source: fine-focus sealed tube 1303 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.018
phi and ω scans θmax = 64.0°, θmin = 4.3°
Absorption correction: multi-scan (SADABS; Bruker, 2002) h = −11→11
Tmin = 0.772, Tmax = 0.821 k = −6→8
3081 measured reflections l = −11→12

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130 H-atom parameters constrained
S = 1.18 w = 1/[σ2(Fo2) + (0.092P)2 + 0.043P] where P = (Fo2 + 2Fc2)/3
1339 reflections (Δ/σ)max < 0.001
174 parameters Δρmax = 0.22 e Å3
1 restraint Δρmin = −0.34 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.0506 (3) −0.0853 (6) 0.6719 (3) 0.0694 (9)
H1A −0.0282 −0.0510 0.6111 0.083*
H1B 0.0885 −0.1959 0.6384 0.083*
C2 0.0108 (3) −0.1346 (10) 0.7998 (3) 0.0938 (16)
H2A −0.0511 −0.2391 0.7881 0.113*
H2B −0.0331 −0.0277 0.8313 0.113*
C3 0.1333 (3) −0.1883 (7) 0.8991 (3) 0.0795 (12)
H3A 0.1061 −0.2173 0.9807 0.095*
H3B 0.1732 −0.3005 0.8700 0.095*
C4 0.2366 (3) −0.0303 (5) 0.9198 (2) 0.0545 (7)
C5 0.2709 (2) 0.0271 (3) 0.7882 (2) 0.0400 (5)
H5 0.3093 −0.0863 0.7567 0.048*
C6 0.3814 (2) 0.1752 (4) 0.7989 (2) 0.0482 (6)
H6A 0.3501 0.2943 0.8272 0.058*
H6B 0.4571 0.1352 0.8616 0.058*
C7 0.4201 (2) 0.1974 (3) 0.6697 (2) 0.0438 (5)
C8 0.3125 (3) 0.2269 (4) 0.5558 (2) 0.0493 (6)
H8 0.2754 0.3536 0.5590 0.059*
C9 0.2037 (2) 0.0820 (4) 0.5517 (2) 0.0468 (6)
H9A 0.2377 −0.0411 0.5347 0.056*
H9B 0.1317 0.1120 0.4820 0.056*
C10 0.1512 (2) 0.0772 (4) 0.6805 (2) 0.0480 (6)
C11 0.5357 (2) 0.1772 (4) 0.6310 (2) 0.0469 (6)
C12 0.5101 (3) 0.1860 (4) 0.4896 (3) 0.0507 (6)
C13 0.6713 (3) 0.1422 (6) 0.7066 (3) 0.0659 (8)
H13A 0.6695 0.1563 0.7970 0.099*
H13B 0.7324 0.2312 0.6812 0.099*
H13C 0.6990 0.0169 0.6901 0.099*
C14 0.0832 (4) 0.2651 (6) 0.7002 (4) 0.0763 (10)
H14A 0.0210 0.2956 0.6237 0.114*
H14B 0.1487 0.3627 0.7171 0.114*
H14C 0.0373 0.2545 0.7720 0.114*
C15 0.1959 (3) 0.1322 (8) 0.9998 (3) 0.0838 (13)
H15A 0.1939 0.0893 1.0859 0.126*
H15B 0.1096 0.1764 0.9613 0.126*
H15C 0.2588 0.2329 1.0025 0.126*
O1 0.35464 (17) −0.1021 (3) 0.99853 (14) 0.0547 (5)
H1 0.3829 −0.1911 0.9619 0.082*
O2 0.37912 (19) 0.2109 (3) 0.44542 (16) 0.0572 (5)
O3 0.5884 (2) 0.1702 (4) 0.41479 (17) 0.0635 (6)
O4 0.4640 (3) 0.6381 (4) 0.85924 (19) 0.0861 (8)
H4WA 0.4612 0.6284 0.7803 0.103*
H4WB 0.5174 0.5467 0.8853 0.103*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0398 (13) 0.106 (3) 0.0599 (16) −0.0191 (17) 0.0010 (11) 0.0081 (18)
C2 0.0463 (14) 0.165 (5) 0.0689 (19) −0.033 (2) 0.0068 (13) 0.020 (3)
C3 0.0572 (17) 0.123 (3) 0.0595 (16) −0.025 (2) 0.0128 (13) 0.025 (2)
C4 0.0433 (13) 0.0820 (19) 0.0394 (12) 0.0026 (13) 0.0106 (9) 0.0026 (14)
C5 0.0330 (11) 0.0499 (13) 0.0371 (11) 0.0018 (9) 0.0065 (8) −0.0020 (9)
C6 0.0447 (12) 0.0580 (14) 0.0414 (11) −0.0076 (12) 0.0057 (9) −0.0093 (12)
C7 0.0467 (12) 0.0426 (12) 0.0412 (11) −0.0065 (10) 0.0054 (9) −0.0028 (10)
C8 0.0525 (13) 0.0519 (13) 0.0432 (12) 0.0018 (11) 0.0072 (10) 0.0079 (11)
C9 0.0416 (12) 0.0578 (14) 0.0384 (11) 0.0031 (11) −0.0006 (9) 0.0050 (11)
C10 0.0352 (11) 0.0638 (15) 0.0433 (12) 0.0049 (12) 0.0022 (9) 0.0014 (12)
C11 0.0474 (12) 0.0495 (13) 0.0441 (12) −0.0106 (11) 0.0090 (9) −0.0033 (11)
C12 0.0594 (14) 0.0468 (13) 0.0481 (12) −0.0101 (12) 0.0152 (10) 0.0021 (12)
C13 0.0443 (13) 0.094 (2) 0.0591 (15) −0.0076 (16) 0.0085 (11) −0.0161 (17)
C14 0.0619 (18) 0.095 (3) 0.0706 (19) 0.0369 (19) 0.0087 (14) 0.0012 (18)
C15 0.0711 (19) 0.135 (4) 0.0500 (15) 0.036 (2) 0.0229 (13) −0.010 (2)
O1 0.0528 (10) 0.0745 (13) 0.0355 (8) 0.0038 (9) 0.0039 (7) 0.0017 (8)
O2 0.0614 (11) 0.0679 (12) 0.0431 (9) −0.0022 (10) 0.0112 (7) 0.0131 (9)
O3 0.0697 (12) 0.0720 (13) 0.0536 (10) −0.0126 (11) 0.0248 (9) 0.0002 (11)
O4 0.1200 (19) 0.0856 (18) 0.0479 (10) 0.0426 (17) 0.0013 (11) −0.0041 (11)

Geometric parameters (Å, º)

C1—C2 1.515 (4) C8—C9 1.512 (4)
C1—C10 1.541 (4) C8—H8 0.9800
C1—H1A 0.9700 C9—C10 1.545 (3)
C1—H1B 0.9700 C9—H9A 0.9700
C2—C3 1.536 (5) C9—H9B 0.9700
C2—H2A 0.9700 C10—C14 1.537 (4)
C2—H2B 0.9700 C11—C12 1.468 (4)
C3—C4 1.532 (5) C11—C13 1.497 (4)
C3—H3A 0.9700 C12—O3 1.223 (3)
C3—H3B 0.9700 C12—O2 1.354 (4)
C4—O1 1.436 (3) C13—H13A 0.9600
C4—C15 1.530 (5) C13—H13B 0.9600
C4—C5 1.542 (3) C13—H13C 0.9600
C5—C6 1.536 (3) C14—H14A 0.9600
C5—C10 1.559 (3) C14—H14B 0.9600
C5—H5 0.9800 C14—H14C 0.9600
C6—C7 1.490 (3) C15—H15A 0.9600
C6—H6A 0.9700 C15—H15B 0.9600
C6—H6B 0.9700 C15—H15C 0.9600
C7—C11 1.325 (3) O1—H1 0.8200
C7—C8 1.496 (3) O4—H4WA 0.8291
C8—O2 1.451 (3) O4—H4WB 0.8628
C2—C1—C10 113.7 (3) O2—C8—H8 109.8
C2—C1—H1A 108.8 C7—C8—H8 109.8
C10—C1—H1A 108.8 C9—C8—H8 109.8
C2—C1—H1B 108.8 C8—C9—C10 110.9 (2)
C10—C1—H1B 108.8 C8—C9—H9A 109.5
H1A—C1—H1B 107.7 C10—C9—H9A 109.5
C1—C2—C3 110.4 (2) C8—C9—H9B 109.5
C1—C2—H2A 109.6 C10—C9—H9B 109.5
C3—C2—H2A 109.6 H9A—C9—H9B 108.0
C1—C2—H2B 109.6 C14—C10—C1 110.2 (2)
C3—C2—H2B 109.6 C14—C10—C9 109.5 (2)
H2A—C2—H2B 108.1 C1—C10—C9 107.3 (2)
C4—C3—C2 112.2 (4) C14—C10—C5 114.7 (2)
C4—C3—H3A 109.2 C1—C10—C5 107.8 (2)
C2—C3—H3A 109.2 C9—C10—C5 107.04 (18)
C4—C3—H3B 109.2 C7—C11—C12 107.2 (2)
C2—C3—H3B 109.2 C7—C11—C13 130.6 (2)
H3A—C3—H3B 107.9 C12—C11—C13 122.1 (2)
O1—C4—C15 103.5 (2) O3—C12—O2 120.9 (3)
O1—C4—C3 108.3 (3) O3—C12—C11 128.9 (3)
C15—C4—C3 112.5 (3) O2—C12—C11 110.2 (2)
O1—C4—C5 108.18 (19) C11—C13—H13A 109.4
C15—C4—C5 114.9 (3) C11—C13—H13B 109.4
C3—C4—C5 109.1 (2) H13A—C13—H13B 109.5
C6—C5—C4 113.3 (2) C11—C13—H13C 109.5
C6—C5—C10 112.0 (2) H13A—C13—H13C 109.5
C4—C5—C10 116.10 (19) H13B—C13—H13C 109.5
C6—C5—H5 104.7 C10—C14—H14A 109.5
C4—C5—H5 104.7 C10—C14—H14B 109.5
C10—C5—H5 104.7 H14A—C14—H14B 109.5
C7—C6—C5 108.42 (18) C10—C14—H14C 109.5
C7—C6—H6A 110.0 H14A—C14—H14C 109.5
C5—C6—H6A 110.0 H14B—C14—H14C 109.5
C7—C6—H6B 110.0 C4—C15—H15A 109.5
C5—C6—H6B 110.0 C4—C15—H15B 109.5
H6A—C6—H6B 108.4 H15A—C15—H15B 109.5
C11—C7—C6 131.6 (2) C4—C15—H15C 109.5
C11—C7—C8 110.0 (2) H15A—C15—H15C 109.5
C6—C7—C8 118.0 (2) H15B—C15—H15C 109.5
O2—C8—C7 104.3 (2) C4—O1—H1 109.5
O2—C8—C9 111.8 (2) C12—O2—C8 108.18 (19)
C7—C8—C9 111.4 (2) H4WA—O4—H4WB 99.5
C10—C1—C2—C3 −58.1 (6) C2—C1—C10—C5 53.2 (4)
C1—C2—C3—C4 57.9 (5) C8—C9—C10—C14 65.4 (3)
C2—C3—C4—O1 −171.6 (3) C8—C9—C10—C1 −175.0 (2)
C2—C3—C4—C15 74.7 (3) C8—C9—C10—C5 −59.5 (3)
C2—C3—C4—C5 −54.1 (4) C6—C5—C10—C14 −60.4 (3)
O1—C4—C5—C6 −58.2 (3) C4—C5—C10—C14 71.8 (3)
C15—C4—C5—C6 56.8 (3) C6—C5—C10—C1 176.4 (2)
C3—C4—C5—C6 −175.8 (2) C4—C5—C10—C1 −51.3 (3)
O1—C4—C5—C10 170.1 (2) C6—C5—C10—C9 61.3 (3)
C15—C4—C5—C10 −74.9 (3) C4—C5—C10—C9 −166.4 (2)
C3—C4—C5—C10 52.6 (3) C6—C7—C11—C12 170.7 (3)
C4—C5—C6—C7 171.3 (2) C8—C7—C11—C12 −1.8 (3)
C10—C5—C6—C7 −55.0 (3) C6—C7—C11—C13 −6.6 (5)
C5—C6—C7—C11 −122.4 (3) C8—C7—C11—C13 −179.0 (3)
C5—C6—C7—C8 49.6 (3) C7—C11—C12—O3 −178.5 (3)
C11—C7—C8—O2 3.0 (3) C13—C11—C12—O3 −1.0 (5)
C6—C7—C8—O2 −170.6 (2) C7—C11—C12—O2 −0.1 (3)
C11—C7—C8—C9 123.7 (2) C13—C11—C12—O2 177.4 (3)
C6—C7—C8—C9 −49.9 (3) O3—C12—O2—C8 −179.4 (3)
O2—C8—C9—C10 169.80 (19) C11—C12—O2—C8 2.1 (3)
C7—C8—C9—C10 53.6 (3) C7—C8—O2—C12 −3.0 (3)
C2—C1—C10—C14 −72.7 (4) C9—C8—O2—C12 −123.5 (2)
C2—C1—C10—C9 168.2 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C5—H5···O4i 0.98 2.63 3.407 (3) 136
C8—H8···O3ii 0.98 2.64 3.308 (4) 126
O1—H1···O4i 0.82 1.91 2.718 (3) 169
O4—H4WA···O3ii 0.83 2.05 2.850 (3) 162
O4—H4WB···O1iii 0.86 1.94 2.764 (3) 159

Symmetry codes: (i) x, y−1, z; (ii) −x+1, y+1/2, −z+1; (iii) −x+1, y+1/2, −z+2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: CV5488).

References

  1. Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Johnson, C. K. & Burnett, M. N. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  3. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  4. Su, R.-N., Shi, S., Wu, H.-B. & Wang, W.-S. (2011). Acta Cryst. E67, o1361. [DOI] [PMC free article] [PubMed]
  5. Sun, C.-L., Yan, H., Li, X.-H., Zheng, X.-F. & Liu, H.-Y. (2012). Nat. Prod. Bioprospect. 2, 156–159.
  6. Xiao, Z.-Y., Wang, X.-C., Zhang, G.-P., Huang, Z.-L. & Hu, L.-H. (2010). Helv. Chim. Acta, 93, 803–810.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989015011251/cv5488sup1.cif

e-71-0o518-sup1.cif (19KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015011251/cv5488Isup2.hkl

e-71-0o518-Isup2.hkl (67.4KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015011251/cv5488Isup4.cdx

. DOI: 10.1107/S2056989015011251/cv5488fig1.tif

Mol­ecular structure of the title compound showing the atomic numbering and 40% probability displacement ellipsoids.

. DOI: 10.1107/S2056989015011251/cv5488fig2.tif

A portion of the crystal packing showing O—H⋯O hydrogen bonds as dashed lines.

CCDC reference: 1405865

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES