Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jun 27;71(Pt 7):o514–o515. doi: 10.1107/S2056989015011706

Crystal structure of ethyl 2-(2,4,5-tri­meth­oxy­phen­yl)quinoline-4-carboxyl­ate

T O Shrungesh Kumar a, S Naveen b, M N Kumara c, K M Mahadevan a, N K Lokanath d,*
PMCID: PMC4518944  PMID: 26279938

Abstract

In the title compound, C21H21NO5, the dihedral angle between the quinoline ring system (r.m.s. deviation = 0.028 Å) and the tri­meth­oxy­benzene ring is 43.38 (5)°. The C atoms of the meth­oxy groups deviate from their attached benzene ring by −0.396 (2), −0.049 (2) and 0.192 (2) Å for the ortho-, meta- and para-substituents, respectively. The pendant ethyl chain is disordered over two orientations in a 0.527 (5):0.473 (5) ratio. A short intra­molecular C—H⋯O contact closes an S(6) ring. In the crystal, inversion dimers linked by pairs of weak C—H⋯O inter­actions generate R 2 2(6) loops. The dimers are linked by further C—H⋯O inter­actions to generate [1-10] chains.

Keywords: crystal structure, quinoline, quinolone-4-ethyl carboxyl­ate, hydrogen bonding, C—H⋯O inter­actions

Related literature  

For background to quinolines and their properties, see: Beagley et al. (2003). For our work in this area, see: Pradeep et al. (2014); Shrungesh Kumar et al. (2015); Sunitha et al. (2015).graphic file with name e-71-0o514-scheme1.jpg

Experimental  

Crystal data  

  • C21H21NO5

  • M r = 367.39

  • Triclinic, Inline graphic

  • a = 8.3444 (3) Å

  • b = 9.3508 (4) Å

  • c = 12.2723 (5) Å

  • α = 104.079 (2)°

  • β = 97.282 (2)°

  • γ = 93.904 (2)°

  • V = 916.43 (6) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.78 mm−1

  • T = 100 K

  • 0.29 × 0.22 × 0.19 mm

Data collection  

  • Bruker X8 Proteum diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2013) T min = 0.797, T max = 0.813

  • 10087 measured reflections

  • 3008 independent reflections

  • 2601 reflections with I > 2σ(I)

  • R int = 0.041

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.117

  • S = 1.04

  • 3008 reflections

  • 277 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: Mercury.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015011706/hb7449sup1.cif

e-71-0o514-sup1.cif (30.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015011706/hb7449Isup2.hkl

e-71-0o514-Isup2.hkl (147.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015011706/hb7449Isup3.cml

. DOI: 10.1107/S2056989015011706/hb7449fig1.tif

A view of the title mol­ecule, with displacement ellipsoids drawn at the 50% probability level.

CCDC reference: 1407284

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
C14H14AO4 0.93 2.30 2.9073(18) 123
C9H9AO3i 0.96 2.53 3.397(2) 150
C20H20AO1ii 0.97 2.51 3.304(5) 139

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors are thankful to the IOE, Vijnana Bhavana, University of Mysore, Mysore, for providing the single-crystal X-ray diffractometer facility.

supplementary crystallographic information

S1. Comment

Quinolines have been found to possess a wide spectrum of biological activities (Beagley et al., 2003,). Among them, the quinolone-4-ethyl carboxylates have been identified as potent antagonizing agents. Keeping in view of their broad spectrum of medicinal properties and in continuation of our work on new quinoline based therapeutic agents (Pradeep et al., 2014, Shrungesh Kumar et al., 2015, Sunitha et al., 2015), the title compound was synthesized. The compound obtained was characterized spectroscopically and its structure was established by X-ray crystallographic studies.

In the title compound, C21H21O5N, the carboxyl group is disordered. The two rings of the quinoline system are fused almost coaxially, with a dihedral angle between their planes of 2.66°. The dihedral angle between the quinoline ring system mean plane (r.m.s. deviation = 0.0238 Å) and the tri-methoxyphenyl ring is 43.34 (1)°. The structure exhibits both inter and intra-molecular hydrogen bonds of the type C–H···O.

S2. Experimental

1H NMR was recorded at 400 MHz in CDCl3 solvent. Mass spectra were recorded on a Jeol SX 102=DA-6000 (10 kV) fast atom bombardment (FAB) mass spectrometer.

A mixture of 2-(2,4,5-trimethoxyphenyl)quinoline-4-carboxylic acid 1.0 g (0.005 mol) and absolute EtOH (15 ml) was stirred at 0–5°C. A catalytic amount of concentrated H2SO4 was added drop wise into the flask until the powdered 2-(2,4,5-trimethoxyphenyl)quinoline-4-carboxylic acid was dissolved. The solution was then refluxed for 15–17 h. The completion of the reaction was monitored by TLC [hexane and ethyl acetate (9:1 v/v)]. The reaction mixture was poured into a crushed ice (100 ml). The precipitate was collected by filtration, washed with water and EtOH, dried under vacuum to obtain the crude product in 85% yield. The crude product was purified by column chromatography using silica gel (60–120 mesh, petroleum ether: ethyl acetate, 9:1 v/v). Colourless rectangular crystals grew after 4 days due to slow evaporation of the solvent. Yield = 85%. M·P. = 100–102 °C.

S3. Refinement

The hydrogen atoms were fixed geometrically (C—H= 0.93–0.96 Å) and allowed to ride on their parent atoms with Uiso(H) =1.5Ueq(C-methyl) and = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

A view of the title molecule, with displacement ellipsoids drawn at the 50% probability level.

Crystal data

C21H21NO5 Z = 2
Mr = 367.39 F(000) = 388
Triclinic, P1 1H NMR(400 MHz, CdCl3 ): δ = 8.71 (d, J = 8.40 Hz, 1H), 8.52 (s, 1H), 7.76 (t, J = 7.60 Hz, 1H), 7.63 (t, J = 6.00 Hz, 2H), 7.25 (s, 1H), 6.64 (s, 1H), 4.52 (q, J = 6.80 Hz, 2H), 3.97 (d, J = 5.20 Hz, 6H), 3.88 (s, 3H), 1.47 (t, J = 7.20 Hz, 3H) ppm. MS (70 eV) m/z(%): 368.0(M+).
Hall symbol: -P 1 Dx = 1.331 Mg m3
a = 8.3444 (3) Å Cu Kα radiation, λ = 1.54178 Å
b = 9.3508 (4) Å Cell parameters from 2601 reflections
c = 12.2723 (5) Å θ = 6.9–64.4°
α = 104.079 (2)° µ = 0.78 mm1
β = 97.282 (2)° T = 100 K
γ = 93.904 (2)° Rectangular block, colourless
V = 916.43 (6) Å3 0.29 × 0.22 × 0.19 mm

Data collection

Bruker X8 Proteum diffractometer 3008 independent reflections
Radiation source: Bruker MicroStar microfocus rotating anode 2601 reflections with I > 2σ(I)
Helios multilayer optics monochromator Rint = 0.041
Detector resolution: 18.4 pixels mm-1 θmax = 64.4°, θmin = 6.9°
φ and ω scans h = −9→9
Absorption correction: multi-scan (SADABS; Bruker, 2013) k = −10→10
Tmin = 0.797, Tmax = 0.813 l = −14→14
10087 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0733P)2 + 0.1234P] where P = (Fo2 + 2Fc2)/3
3008 reflections (Δ/σ)max < 0.001
277 parameters Δρmax = 0.20 e Å3
0 restraints Δρmin = −0.28 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 0.85573 (12) −0.06460 (10) 0.25750 (8) 0.0282 (3)
O2 0.82233 (13) −0.11123 (10) 0.03839 (8) 0.0292 (3)
O3 0.55682 (13) 0.33976 (11) 0.05983 (8) 0.0315 (4)
O4 0.22604 (13) 0.74517 (12) 0.41032 (9) 0.0388 (3)
O5 0.1869 (4) 0.5760 (4) 0.2445 (2) 0.0279 (8) 0.527 (5)
N1 0.73685 (14) 0.47119 (12) 0.39148 (9) 0.0220 (3)
C1 0.73786 (16) 0.17037 (14) 0.27663 (12) 0.0211 (4)
C2 0.78484 (16) 0.04140 (15) 0.21340 (12) 0.0215 (4)
C3 0.76438 (16) 0.01469 (15) 0.09451 (12) 0.0228 (4)
C4 0.68822 (17) 0.11314 (15) 0.04271 (12) 0.0247 (4)
C5 0.63437 (16) 0.24009 (15) 0.10755 (12) 0.0226 (4)
C6 0.66258 (16) 0.27241 (14) 0.22587 (12) 0.0203 (4)
C7 0.8450 (2) −0.05532 (17) 0.37384 (13) 0.0361 (5)
C8 0.81347 (19) −0.13690 (17) −0.08181 (12) 0.0315 (5)
C9 0.5312 (2) 0.31046 (18) −0.06125 (12) 0.0370 (5)
C10 0.62512 (16) 0.41161 (14) 0.30220 (11) 0.0204 (4)
C11 0.47701 (17) 0.47445 (15) 0.28373 (12) 0.0222 (4)
C12 0.44526 (17) 0.59953 (14) 0.35868 (11) 0.0218 (4)
C13 0.56525 (16) 0.67030 (14) 0.45409 (12) 0.0222 (4)
C14 0.55434 (18) 0.80529 (15) 0.53426 (12) 0.0257 (4)
C15 0.67839 (19) 0.86451 (16) 0.62120 (13) 0.0296 (4)
C16 0.81946 (18) 0.79239 (17) 0.63317 (13) 0.0295 (5)
C17 0.83567 (18) 0.66226 (16) 0.55755 (12) 0.0263 (4)
C18 0.70992 (16) 0.59871 (14) 0.46574 (11) 0.0215 (4)
C19 0.28323 (18) 0.65885 (16) 0.34077 (12) 0.0282 (4)
C20 0.0230 (6) 0.6201 (5) 0.2213 (3) 0.0326 (12) 0.527 (5)
C21 −0.0515 (4) 0.5296 (4) 0.1068 (3) 0.0495 (13) 0.527 (5)
C20X 0.0784 (5) 0.6858 (5) 0.1962 (3) 0.0279 (11) 0.473 (5)
C21X −0.0638 (6) 0.5817 (5) 0.2021 (4) 0.0389 (14) 0.473 (5)
O5X 0.2315 (4) 0.6296 (4) 0.2276 (3) 0.0255 (9) 0.473 (5)
H7A 0.89180 −0.13750 0.39500 0.0540*
H7C 0.90300 0.03580 0.42020 0.0540*
H8A 0.86270 −0.22540 −0.11110 0.0470*
H7B 0.73310 −0.05810 0.38480 0.0540*
H1A 0.75670 0.19040 0.35550 0.0250*
H4A 0.67280 0.09450 −0.03610 0.0300*
H9B 0.46750 0.21660 −0.09300 0.0550*
H9C 0.63410 0.30780 −0.08850 0.0550*
H11A 0.40110 0.43010 0.22010 0.0270*
H14A 0.46170 0.85430 0.52770 0.0310*
H15A 0.66930 0.95350 0.67290 0.0360*
H16A 0.90240 0.83360 0.69310 0.0350*
H17A 0.92940 0.61520 0.56630 0.0320*
H20A 0.02880 0.72470 0.22330 0.0390* 0.527 (5)
H20B −0.04160 0.60270 0.27810 0.0390* 0.527 (5)
H21A −0.15830 0.55740 0.08850 0.0740* 0.527 (5)
H21B −0.05870 0.42660 0.10630 0.0740* 0.527 (5)
H21C 0.01440 0.54650 0.05150 0.0740* 0.527 (5)
H8B 0.87000 −0.05420 −0.09920 0.0470*
H8C 0.70180 −0.14830 −0.11600 0.0470*
H9A 0.47470 0.38730 −0.08350 0.0550*
H20C 0.07290 0.69820 0.11960 0.0330* 0.473 (5)
H20D 0.07340 0.78210 0.24710 0.0330* 0.473 (5)
H21D −0.16300 0.61860 0.17740 0.0580* 0.473 (5)
H21E −0.06240 0.57460 0.27900 0.0580* 0.473 (5)
H21F −0.05690 0.48550 0.15380 0.0580* 0.473 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0405 (6) 0.0247 (5) 0.0224 (6) 0.0145 (4) 0.0067 (5) 0.0076 (4)
O2 0.0396 (6) 0.0251 (5) 0.0220 (6) 0.0129 (4) 0.0073 (4) 0.0004 (4)
O3 0.0467 (7) 0.0290 (6) 0.0194 (6) 0.0160 (5) 0.0014 (5) 0.0060 (4)
O4 0.0359 (6) 0.0413 (6) 0.0347 (6) 0.0193 (5) 0.0053 (5) −0.0032 (5)
O5 0.0231 (14) 0.0331 (16) 0.0269 (14) 0.0105 (11) 0.0050 (10) 0.0040 (11)
N1 0.0230 (6) 0.0229 (6) 0.0196 (6) 0.0028 (5) 0.0038 (5) 0.0040 (5)
C1 0.0213 (7) 0.0225 (7) 0.0198 (7) 0.0027 (5) 0.0045 (6) 0.0050 (6)
C2 0.0209 (7) 0.0214 (7) 0.0228 (7) 0.0042 (5) 0.0029 (6) 0.0067 (6)
C3 0.0233 (7) 0.0207 (7) 0.0228 (8) 0.0031 (5) 0.0053 (6) 0.0012 (6)
C4 0.0283 (8) 0.0266 (7) 0.0180 (7) 0.0038 (6) 0.0031 (6) 0.0036 (6)
C5 0.0229 (7) 0.0233 (7) 0.0219 (8) 0.0042 (5) 0.0021 (6) 0.0066 (6)
C6 0.0180 (6) 0.0220 (7) 0.0212 (7) 0.0023 (5) 0.0038 (5) 0.0055 (6)
C7 0.0576 (11) 0.0295 (8) 0.0277 (9) 0.0165 (7) 0.0121 (8) 0.0134 (7)
C8 0.0379 (9) 0.0317 (8) 0.0214 (8) 0.0095 (6) 0.0070 (6) −0.0027 (6)
C9 0.0579 (11) 0.0331 (8) 0.0196 (8) 0.0135 (7) −0.0025 (7) 0.0080 (7)
C10 0.0227 (7) 0.0215 (7) 0.0194 (7) 0.0034 (5) 0.0059 (6) 0.0082 (6)
C11 0.0239 (7) 0.0237 (7) 0.0193 (7) 0.0039 (5) 0.0033 (6) 0.0057 (6)
C12 0.0256 (7) 0.0219 (7) 0.0206 (7) 0.0054 (5) 0.0067 (6) 0.0083 (6)
C13 0.0261 (7) 0.0213 (7) 0.0211 (7) 0.0016 (5) 0.0086 (6) 0.0069 (6)
C14 0.0294 (8) 0.0236 (7) 0.0257 (8) 0.0046 (6) 0.0105 (6) 0.0054 (6)
C15 0.0375 (8) 0.0231 (7) 0.0258 (8) −0.0009 (6) 0.0124 (7) −0.0014 (6)
C16 0.0295 (8) 0.0333 (8) 0.0220 (8) −0.0044 (6) 0.0054 (6) 0.0011 (6)
C17 0.0247 (7) 0.0309 (8) 0.0220 (8) 0.0018 (6) 0.0053 (6) 0.0036 (6)
C18 0.0249 (7) 0.0214 (7) 0.0194 (7) 0.0015 (5) 0.0079 (6) 0.0056 (6)
C19 0.0323 (8) 0.0288 (7) 0.0239 (8) 0.0113 (6) 0.0050 (6) 0.0046 (6)
C20 0.022 (2) 0.035 (2) 0.042 (2) 0.0086 (18) 0.0069 (19) 0.0095 (17)
C21 0.0295 (18) 0.057 (2) 0.052 (3) 0.0140 (15) −0.0062 (16) −0.0014 (19)
C20X 0.0195 (18) 0.034 (2) 0.033 (2) 0.0086 (15) 0.0046 (14) 0.0120 (16)
C21X 0.024 (2) 0.042 (2) 0.050 (3) −0.0030 (19) 0.010 (2) 0.010 (2)
O5X 0.0205 (15) 0.0359 (18) 0.0222 (14) 0.0111 (12) 0.0051 (11) 0.0084 (12)

Geometric parameters (Å, º)

O1—C2 1.3729 (17) C17—C18 1.419 (2)
O1—C7 1.4238 (18) C20—C21 1.485 (5)
O2—C3 1.3645 (17) C20X—C21X 1.503 (7)
O2—C8 1.4272 (17) C1—H1A 0.9300
O3—C5 1.3718 (18) C4—H4A 0.9300
O3—C9 1.4291 (17) C7—H7A 0.9600
O4—C19 1.1951 (18) C7—H7B 0.9600
O5—C19 1.368 (3) C7—H7C 0.9600
O5—C20 1.469 (6) C8—H8A 0.9600
O5X—C20X 1.457 (6) C8—H8B 0.9600
O5X—C19 1.355 (4) C8—H8C 0.9600
N1—C18 1.3648 (17) C9—H9A 0.9600
N1—C10 1.3242 (17) C9—H9B 0.9600
C1—C2 1.377 (2) C9—H9C 0.9600
C1—C6 1.4017 (19) C11—H11A 0.9300
C2—C3 1.405 (2) C14—H14A 0.9300
C3—C4 1.385 (2) C15—H15A 0.9300
C4—C5 1.396 (2) C16—H16A 0.9300
C5—C6 1.395 (2) C17—H17A 0.9300
C6—C10 1.4852 (19) C20—H20A 0.9700
C10—C11 1.420 (2) C20—H20B 0.9700
C11—C12 1.366 (2) C20X—H20C 0.9700
C12—C19 1.507 (2) C20X—H20D 0.9700
C12—C13 1.4307 (19) C21—H21C 0.9600
C13—C18 1.4278 (19) C21—H21A 0.9600
C13—C14 1.416 (2) C21—H21B 0.9600
C14—C15 1.368 (2) C21X—H21D 0.9600
C15—C16 1.405 (2) C21X—H21E 0.9600
C16—C17 1.366 (2) C21X—H21F 0.9600
C2—O1—C7 115.97 (11) O1—C7—H7B 109.00
C3—O2—C8 117.06 (11) O1—C7—H7C 109.00
C5—O3—C9 117.82 (12) H7A—C7—H7B 109.00
C19—O5—C20 116.5 (3) H7A—C7—H7C 109.00
C19—O5X—C20X 115.2 (3) H7B—C7—H7C 110.00
C10—N1—C18 118.72 (12) O2—C8—H8A 109.00
C2—C1—C6 122.04 (13) O2—C8—H8B 109.00
O1—C2—C1 125.03 (13) O2—C8—H8C 109.00
O1—C2—C3 115.89 (12) H8A—C8—H8B 109.00
C1—C2—C3 119.05 (13) H8A—C8—H8C 110.00
O2—C3—C2 115.51 (12) H8B—C8—H8C 109.00
O2—C3—C4 124.83 (13) O3—C9—H9A 109.00
C2—C3—C4 119.66 (13) O3—C9—H9B 109.00
C3—C4—C5 120.65 (13) O3—C9—H9C 109.00
O3—C5—C6 117.12 (12) H9A—C9—H9B 109.00
C4—C5—C6 120.22 (13) H9A—C9—H9C 109.00
O3—C5—C4 122.64 (12) H9B—C9—H9C 110.00
C1—C6—C5 118.19 (13) C10—C11—H11A 120.00
C5—C6—C10 124.27 (12) C12—C11—H11A 120.00
C1—C6—C10 117.48 (12) C13—C14—H14A 120.00
N1—C10—C6 115.55 (12) C15—C14—H14A 120.00
C6—C10—C11 122.60 (12) C14—C15—H15A 120.00
N1—C10—C11 121.81 (12) C16—C15—H15A 120.00
C10—C11—C12 120.52 (13) C15—C16—H16A 120.00
C11—C12—C13 119.41 (13) C17—C16—H16A 120.00
C13—C12—C19 121.15 (12) C16—C17—H17A 120.00
C11—C12—C19 119.44 (12) C18—C17—H17A 120.00
C12—C13—C14 125.81 (13) O5—C20—H20A 110.00
C14—C13—C18 118.19 (12) O5—C20—H20B 110.00
C12—C13—C18 115.97 (12) C21—C20—H20A 110.00
C13—C14—C15 120.82 (14) C21—C20—H20B 110.00
C14—C15—C16 120.71 (14) H20A—C20—H20B 109.00
C15—C16—C17 120.52 (14) O5X—C20X—H20D 109.00
C16—C17—C18 120.16 (14) C21X—C20X—H20C 109.00
N1—C18—C13 123.51 (12) C21X—C20X—H20D 109.00
N1—C18—C17 116.89 (12) H20C—C20X—H20D 108.00
C13—C18—C17 119.59 (12) O5X—C20X—H20C 109.00
O4—C19—C12 126.01 (13) H21A—C21—H21C 109.00
O4—C19—O5X 123.5 (2) H21B—C21—H21C 110.00
O4—C19—O5 120.22 (19) C20—C21—H21A 109.00
O5X—C19—C12 108.59 (18) C20—C21—H21B 109.00
O5—C19—C12 111.91 (18) C20—C21—H21C 109.00
O5—C20—C21 107.5 (3) H21A—C21—H21B 110.00
O5X—C20X—C21X 111.1 (4) C20X—C21X—H21D 109.00
C2—C1—H1A 119.00 C20X—C21X—H21E 109.00
C6—C1—H1A 119.00 C20X—C21X—H21F 110.00
C3—C4—H4A 120.00 H21D—C21X—H21E 109.00
C5—C4—H4A 120.00 H21D—C21X—H21F 109.00
O1—C7—H7A 109.00 H21E—C21X—H21F 109.00
C7—O1—C2—C1 14.91 (19) C4—C5—C6—C10 173.60 (13)
C7—O1—C2—C3 −166.87 (12) C1—C6—C10—N1 39.18 (18)
C8—O2—C3—C2 −175.94 (12) C1—C6—C10—C11 −138.53 (14)
C8—O2—C3—C4 4.6 (2) C5—C6—C10—N1 −137.83 (14)
C9—O3—C5—C4 0.0 (2) C5—C6—C10—C11 44.5 (2)
C9—O3—C5—C6 178.22 (13) N1—C10—C11—C12 −0.1 (2)
C20—O5—C19—O4 12.1 (4) C6—C10—C11—C12 177.43 (13)
C20—O5—C19—C12 177.4 (3) C10—C11—C12—C13 2.3 (2)
C19—O5—C20—C21 172.6 (3) C10—C11—C12—C19 −176.45 (13)
C18—N1—C10—C6 −179.53 (12) C11—C12—C13—C14 175.50 (14)
C18—N1—C10—C11 −1.8 (2) C11—C12—C13—C18 −2.47 (19)
C10—N1—C18—C13 1.6 (2) C19—C12—C13—C14 −5.7 (2)
C10—N1—C18—C17 −177.38 (13) C19—C12—C13—C18 176.29 (12)
C6—C1—C2—O1 −178.50 (13) C11—C12—C19—O4 162.65 (15)
C6—C1—C2—C3 3.3 (2) C11—C12—C19—O5 −1.7 (2)
C2—C1—C6—C5 0.4 (2) C13—C12—C19—O4 −16.1 (2)
C2—C1—C6—C10 −176.77 (13) C13—C12—C19—O5 179.57 (19)
O1—C2—C3—O2 −1.94 (18) C12—C13—C14—C15 −178.64 (14)
O1—C2—C3—C4 177.53 (12) C18—C13—C14—C15 −0.7 (2)
C1—C2—C3—O2 176.39 (12) C12—C13—C18—N1 0.6 (2)
C1—C2—C3—C4 −4.1 (2) C12—C13—C18—C17 179.48 (13)
O2—C3—C4—C5 −179.35 (13) C14—C13—C18—N1 −177.57 (13)
C2—C3—C4—C5 1.2 (2) C14—C13—C18—C17 1.4 (2)
C3—C4—C5—O3 −179.28 (13) C13—C14—C15—C16 −0.2 (2)
C3—C4—C5—C6 2.6 (2) C14—C15—C16—C17 0.5 (2)
O3—C5—C6—C1 178.38 (12) C15—C16—C17—C18 0.2 (2)
O3—C5—C6—C10 −4.6 (2) C16—C17—C18—N1 177.90 (13)
C4—C5—C6—C1 −3.4 (2) C16—C17—C18—C13 −1.1 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C14—H14A···O4 0.93 2.30 2.9073 (18) 123
C9—H9A···O3i 0.96 2.53 3.397 (2) 150
C20—H20A···O1ii 0.97 2.51 3.304 (5) 139

Symmetry codes: (i) −x+1, −y+1, −z; (ii) x−1, y+1, z.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7449).

References

  1. Beagley, P., Blackie, M. A., Chibale, K., Clarkson, C., Meijboom, R., Moss, J. R., Smith, P. J. & Su, H. (2003). Dalton Trans. pp. 3046.
  2. Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  4. Pradeep, P. S., Naveen, S., Kumara, M. N., Mahadevan, K. M. & Lokanath, N. K. (2014). Acta Cryst. E70, o981–o982. [DOI] [PMC free article] [PubMed]
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Shrungesh Kumar, T. O., Naveen, S., Kumara, M. N., Mahadevan, K. M. & Lokanath, N. K. (2015). Acta Cryst. E71, o121. [DOI] [PMC free article] [PubMed]
  7. Sunitha, V. M., Naveen, S., Manjunath, H. R., Benaka Prasad, S. B., Manivannan, V. & Lokanath, N. K. (2015). Acta Cryst. E71, o341–o342. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015011706/hb7449sup1.cif

e-71-0o514-sup1.cif (30.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015011706/hb7449Isup2.hkl

e-71-0o514-Isup2.hkl (147.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015011706/hb7449Isup3.cml

. DOI: 10.1107/S2056989015011706/hb7449fig1.tif

A view of the title mol­ecule, with displacement ellipsoids drawn at the 50% probability level.

CCDC reference: 1407284

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES