Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1996 Sep 16;15(18):5077–5084.

A plant viral coat protein RNA binding consensus sequence contains a crucial arginine.

P Ansel-McKinney 1, S W Scott 1, M Swanson 1, X Ge 1, L Gehrke 1
PMCID: PMC452247  PMID: 8890181

Abstract

A defining feature of alfalfa mosaic virus (AMV) and ilarviruses [type virus: tobacco streak virus (TSV)] is that, in addition to genomic RNAs, viral coat protein is required to establish infection in plants. AMV and TSV coat proteins, which share little primary amino acid sequence identity, are functionally interchangeable in RNA binding and initiation of infection. The lysine-rich amino-terminal RNA binding domain of the AMV coat protein lacks previously identified RNA binding motifs. Here, the AMV coat protein RNA binding domain is shown to contain a single arginine whose specific side chain and position are crucial for RNA binding. In addition, the putative RNA binding domain of two ilarvirus coat proteins, TSV and citrus variegation virus, is identified and also shown to contain a crucial arginine. AMV and ilarvirus coat protein sequence alignment centering on the key arginine revealed a new RNA binding consensus sequence. This consensus may explain in part why heterologous viral RNA-coat protein mixtures are infectious.

Full text

PDF
5084

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bachman E. J., Scott S. W., Xin G., Vance V. B. The complete nucleotide sequence of prune dwarf ilarvirus RNA 3: implications for coat protein activation of genome replication in ilarviruses. Virology. 1994 May 15;201(1):127–131. doi: 10.1006/viro.1994.1272. [DOI] [PubMed] [Google Scholar]
  2. Baer M. L., Houser F., Loesch-Fries L. S., Gehrke L. Specific RNA binding by amino-terminal peptides of alfalfa mosaic virus coat protein. EMBO J. 1994 Feb 1;13(3):727–735. doi: 10.1002/j.1460-2075.1994.tb06312.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bandziulis R. J., Swanson M. S., Dreyfuss G. RNA-binding proteins as developmental regulators. Genes Dev. 1989 Apr;3(4):431–437. doi: 10.1101/gad.3.4.431. [DOI] [PubMed] [Google Scholar]
  4. Barker R. F., Jarvis N. P., Thompson D. V., Loesch-Fries L. S., Hall T. C. Complete nucleotide sequence of alfalfa mosaic virus RNA3. Nucleic Acids Res. 1983 May 11;11(9):2881–2891. doi: 10.1093/nar/11.9.2881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Berg J. M. Potential metal-binding domains in nucleic acid binding proteins. Science. 1986 Apr 25;232(4749):485–487. doi: 10.1126/science.2421409. [DOI] [PubMed] [Google Scholar]
  6. Biou V., Yaremchuk A., Tukalo M., Cusack S. The 2.9 A crystal structure of T. thermophilus seryl-tRNA synthetase complexed with tRNA(Ser). Science. 1994 Mar 11;263(5152):1404–1410. doi: 10.1126/science.8128220. [DOI] [PubMed] [Google Scholar]
  7. Burd C. G., Dreyfuss G. Conserved structures and diversity of functions of RNA-binding proteins. Science. 1994 Jul 29;265(5172):615–621. doi: 10.1126/science.8036511. [DOI] [PubMed] [Google Scholar]
  8. Calnan B. J., Biancalana S., Hudson D., Frankel A. D. Analysis of arginine-rich peptides from the HIV Tat protein reveals unusual features of RNA-protein recognition. Genes Dev. 1991 Feb;5(2):201–210. doi: 10.1101/gad.5.2.201. [DOI] [PubMed] [Google Scholar]
  9. Cavarelli J., Rees B., Ruff M., Thierry J. C., Moras D. Yeast tRNA(Asp) recognition by its cognate class II aminoacyl-tRNA synthetase. Nature. 1993 Mar 11;362(6416):181–184. doi: 10.1038/362181a0. [DOI] [PubMed] [Google Scholar]
  10. Chen L., Frankel A. D. A peptide interaction in the major groove of RNA resembles protein interactions in the minor groove of DNA. Proc Natl Acad Sci U S A. 1995 May 23;92(11):5077–5081. doi: 10.1073/pnas.92.11.5077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Clemens K. R., Wolf V., McBryant S. J., Zhang P., Liao X., Wright P. E., Gottesfeld J. M. Molecular basis for specific recognition of both RNA and DNA by a zinc finger protein. Science. 1993 Apr 23;260(5107):530–533. doi: 10.1126/science.8475383. [DOI] [PubMed] [Google Scholar]
  12. Cornelissen B. J., Brederode F. T., Moormann R. J., Bol J. F. Complete nucleotide sequence of alfalfa mosaic virus RNA 1. Nucleic Acids Res. 1983 Mar 11;11(5):1253–1265. doi: 10.1093/nar/11.5.1253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Cornelissen B. J., Janssen H., Zuidema D., Bol J. F. Complete nucleotide sequence of tobacco streak virus RNA 3. Nucleic Acids Res. 1984 Mar 12;12(5):2427–2437. doi: 10.1093/nar/12.5.2427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Cullen B. R. Does HIV-1 Tat induce a change in viral initiation rights? Cell. 1993 May 7;73(3):417–420. doi: 10.1016/0092-8674(93)90126-b. [DOI] [PubMed] [Google Scholar]
  15. Dasgupta R., Kaesberg P. Complete nucleotide sequences of the coat protein messenger RNAs of brome mosaic virus and cowpea chlorotic mottle virus. Nucleic Acids Res. 1982 Jan 22;10(2):703–713. doi: 10.1093/nar/10.2.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. De Graaff M., Man in't Veld M. R., Jaspars E. M. In vitro evidence that the coat protein of alfalfa mosaic virus plays a direct role in the regulation of plus and minus RNA synthesis: implications for the life cycle of alfalfa mosaic virus. Virology. 1995 Apr 20;208(2):583–589. doi: 10.1006/viro.1995.1189. [DOI] [PubMed] [Google Scholar]
  17. Delling U., Roy S., Sumner-Smith M., Barnett R., Reid L., Rosen C. A., Sonenberg N. The number of positively charged amino acids in the basic domain of Tat is critical for trans-activation and complex formation with TAR RNA. Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):6234–6238. doi: 10.1073/pnas.88.14.6234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Dominguez G., Wang C. Y., Frey T. K. Sequence of the genome RNA of rubella virus: evidence for genetic rearrangement during togavirus evolution. Virology. 1990 Jul;177(1):225–238. doi: 10.1016/0042-6822(90)90476-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Dore J. M., van Dun C. M., Pinck L., Bol J. F. Alfalfa mosaic virus RNA3 mutants do not replicate in transgenic plants expressing RNA3-specific genes. J Gen Virol. 1991 Feb;72(Pt 2):253–258. doi: 10.1099/0022-1317-72-2-253. [DOI] [PubMed] [Google Scholar]
  20. Gonsalves D., Garnsey S. M. Infectivity of heterologous RNA-protein mixtures from alfalfa mosaic, citrus leaf rugose, citrus variegation, and tobacco streak viruses. Virology. 1975 Oct;67(2):319–326. doi: 10.1016/0042-6822(75)90433-x. [DOI] [PubMed] [Google Scholar]
  21. Grodberg J., Dunn J. J. ompT encodes the Escherichia coli outer membrane protease that cleaves T7 RNA polymerase during purification. J Bacteriol. 1988 Mar;170(3):1245–1253. doi: 10.1128/jb.170.3.1245-1253.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Guo D., Maiss E., Adam G., Casper R. Prunus necrotic ringspot ilarvirus: nucleotide sequence of RNA3 and the relationship to other ilarviruses based on coat protein comparison. J Gen Virol. 1995 May;76(Pt 5):1073–1079. doi: 10.1099/0022-1317-76-5-1073. [DOI] [PubMed] [Google Scholar]
  23. Hammond R. W., Crosslin J. M. The complete nucleotide sequence of RNA 3 of a peach isolate of Prunus necrotic ringspot virus. Virology. 1995 Apr 1;208(1):349–353. doi: 10.1006/viro.1995.1159. [DOI] [PubMed] [Google Scholar]
  24. Houser-Scott F., Baer M. L., Liem K. F., Jr, Cai J. M., Gehrke L. Nucleotide sequence and structural determinants of specific binding of coat protein or coat protein peptides to the 3' untranslated region of alfalfa mosaic virus RNA 4. J Virol. 1994 Apr;68(4):2194–2205. doi: 10.1128/jvi.68.4.2194-2205.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Houwing C. J., Jaspars E. M. Coat protein binds to the 3'-terminal part of RNA 4 of alfalfa mosaic virus. Biochemistry. 1978 Jul 11;17(14):2927–2933. doi: 10.1021/bi00607a035. [DOI] [PubMed] [Google Scholar]
  26. Houwing C. J., Jaspars E. M. Coat protein stimulates replication complexes of alfalfa mosaic virus to produce virion RNAs in vitro. Biochimie. 1993;75(7):617–621. doi: 10.1016/0300-9084(93)90068-4. [DOI] [PubMed] [Google Scholar]
  27. Huber P. W. Chemical nucleases: their use in studying RNA structure and RNA-protein interactions. FASEB J. 1993 Nov;7(14):1367–1375. doi: 10.1096/fasebj.7.14.7693534. [DOI] [PubMed] [Google Scholar]
  28. Kan J. H., Andree P. J., Kouijzer L. C., Mellema J. E. Proton-magnetic-resonance studies on the coat protein of alfalfa mosaic virus. Eur J Biochem. 1982 Aug;126(1):29–33. doi: 10.1111/j.1432-1033.1982.tb06741.x. [DOI] [PubMed] [Google Scholar]
  29. Kaper J. M. Arrangement and identification of simple isometric viruses according to their dominating stabilizing interactions. Virology. 1973 Sep;55(1):299–304. doi: 10.1016/s0042-6822(73)81035-9. [DOI] [PubMed] [Google Scholar]
  30. Keese P., Mackenzie A., Gibbs A. Nucleotide sequence of the genome of an Australian isolate of turnip yellow mosaic tymovirus. Virology. 1989 Oct;172(2):536–546. doi: 10.1016/0042-6822(89)90196-7. [DOI] [PubMed] [Google Scholar]
  31. Kinney R. M., Johnson B. J., Welch J. B., Tsuchiya K. R., Trent D. W. The full-length nucleotide sequences of the virulent Trinidad donkey strain of Venezuelan equine encephalitis virus and its attenuated vaccine derivative, strain TC-83. Virology. 1989 May;170(1):19–30. doi: 10.1016/0042-6822(89)90347-4. [DOI] [PubMed] [Google Scholar]
  32. Kjems J., Calnan B. J., Frankel A. D., Sharp P. A. Specific binding of a basic peptide from HIV-1 Rev. EMBO J. 1992 Mar;11(3):1119–1129. doi: 10.1002/j.1460-2075.1992.tb05152.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Knapp G. Enzymatic approaches to probing of RNA secondary and tertiary structure. Methods Enzymol. 1989;180:192–212. doi: 10.1016/0076-6879(89)80102-8. [DOI] [PubMed] [Google Scholar]
  34. Latham J. A., Cech T. R. Defining the inside and outside of a catalytic RNA molecule. Science. 1989 Jul 21;245(4915):276–282. doi: 10.1126/science.2501870. [DOI] [PubMed] [Google Scholar]
  35. Lazinski D., Grzadzielska E., Das A. Sequence-specific recognition of RNA hairpins by bacteriophage antiterminators requires a conserved arginine-rich motif. Cell. 1989 Oct 6;59(1):207–218. doi: 10.1016/0092-8674(89)90882-9. [DOI] [PubMed] [Google Scholar]
  36. Melefors O., Hentze M. W. Translational regulation by mRNA/protein interactions in eukaryotic cells: ferritin and beyond. Bioessays. 1993 Feb;15(2):85–90. doi: 10.1002/bies.950150203. [DOI] [PubMed] [Google Scholar]
  37. Milligan J. F., Groebe D. R., Witherell G. W., Uhlenbeck O. C. Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res. 1987 Nov 11;15(21):8783–8798. doi: 10.1093/nar/15.21.8783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Milligan J. F., Uhlenbeck O. C. Synthesis of small RNAs using T7 RNA polymerase. Methods Enzymol. 1989;180:51–62. doi: 10.1016/0076-6879(89)80091-6. [DOI] [PubMed] [Google Scholar]
  39. Neeleman L., Van der Vossen E. A., Bol J. F. Infection of tobacco with alfalfa mosaic virus cDNAs sheds light on the early function of the coat protein. Virology. 1993 Oct;196(2):883–887. doi: 10.1006/viro.1993.1551. [DOI] [PubMed] [Google Scholar]
  40. Puglisi J. D., Chen L., Blanchard S., Frankel A. D. Solution structure of a bovine immunodeficiency virus Tat-TAR peptide-RNA complex. Science. 1995 Nov 17;270(5239):1200–1203. doi: 10.1126/science.270.5239.1200. [DOI] [PubMed] [Google Scholar]
  41. Puglisi J. D., Tan R., Calnan B. J., Frankel A. D., Williamson J. R. Conformation of the TAR RNA-arginine complex by NMR spectroscopy. Science. 1992 Jul 3;257(5066):76–80. doi: 10.1126/science.1621097. [DOI] [PubMed] [Google Scholar]
  42. Qian Z., Wilusz J. Cloning of a cDNA encoding an RNA binding protein by screening expression libraries using a northwestern strategy. Anal Biochem. 1993 Aug 1;212(2):547–554. doi: 10.1006/abio.1993.1367. [DOI] [PubMed] [Google Scholar]
  43. Quadt R., Rosdorff H. J., Hunt T. W., Jaspars E. M. Analysis of the protein composition of alfalfa mosaic virus RNA-dependent RNA polymerase. Virology. 1991 May;182(1):309–315. doi: 10.1016/0042-6822(91)90674-z. [DOI] [PubMed] [Google Scholar]
  44. Quigley G. J., Gehrke L., Roth D. A., Auron P. E. Computer-aided nucleic acid secondary structure modeling incorporating enzymatic digestion data. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):347–366. doi: 10.1093/nar/12.1part1.347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Reusken C. B., Neeleman L., Bol J. F. Ability of tobacco streak virus coat protein to substitute for late functions of alfalfa mosaic virus coat protein. J Virol. 1995 Jul;69(7):4552–4555. doi: 10.1128/jvi.69.7.4552-4555.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Reusken C. B., Neeleman L., Bol J. F. The 3'-untranslated region of alfalfa mosaic virus RNA 3 contains at least two independent binding sites for viral coat protein. Nucleic Acids Res. 1994 Apr 25;22(8):1346–1353. doi: 10.1093/nar/22.8.1346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Richardson J. S., Richardson D. C. Amino acid preferences for specific locations at the ends of alpha helices. Science. 1988 Jun 17;240(4859):1648–1652. doi: 10.1126/science.3381086. [DOI] [PubMed] [Google Scholar]
  48. Rould M. A., Perona J. J., Steitz T. A. Structural basis of anticodon loop recognition by glutaminyl-tRNA synthetase. Nature. 1991 Jul 18;352(6332):213–218. doi: 10.1038/352213a0. [DOI] [PubMed] [Google Scholar]
  49. Scholtz J. M., Baldwin R. L. The mechanism of alpha-helix formation by peptides. Annu Rev Biophys Biomol Struct. 1992;21:95–118. doi: 10.1146/annurev.bb.21.060192.000523. [DOI] [PubMed] [Google Scholar]
  50. Scott S. W., Ge X. The complete nucleotide sequence of RNA 3 of citrus leaf rugose and citrus variegation ilarviruses. J Gen Virol. 1995 Apr;76(Pt 4):957–963. doi: 10.1099/0022-1317-76-4-957. [DOI] [PubMed] [Google Scholar]
  51. Scott S. W., Ge X. The complete nucleotide sequence of the RNA 3 of lilac ring mottle ilarvirus. J Gen Virol. 1995 Jul;76(Pt 7):1801–1806. doi: 10.1099/0022-1317-76-7-1801. [DOI] [PubMed] [Google Scholar]
  52. Seeman N. C., Rosenberg J. M., Rich A. Sequence-specific recognition of double helical nucleic acids by proteins. Proc Natl Acad Sci U S A. 1976 Mar;73(3):804–808. doi: 10.1073/pnas.73.3.804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Sehnke P. C., Mason A. M., Hood S. J., Lister R. M., Johnson J. E. A "zinc-finger"-type binding domain in tobacco streak virus coat protein. Virology. 1989 Jan;168(1):48–56. doi: 10.1016/0042-6822(89)90402-9. [DOI] [PubMed] [Google Scholar]
  54. Strauss E. G., Levinson R., Rice C. M., Dalrymple J., Strauss J. H. Nonstructural proteins nsP3 and nsP4 of Ross River and O'Nyong-nyong viruses: sequence and comparison with those of other alphaviruses. Virology. 1988 May;164(1):265–274. doi: 10.1016/0042-6822(88)90644-7. [DOI] [PubMed] [Google Scholar]
  55. Strauss J. H., Strauss E. G. The alphaviruses: gene expression, replication, and evolution. Microbiol Rev. 1994 Sep;58(3):491–562. doi: 10.1128/mr.58.3.491-562.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Sánchez-Navarro J. A., Pallás V. Nucleotide sequence of apple mosaic ilarvirus RNA 4. J Gen Virol. 1994 Jun;75(Pt 6):1441–1445. doi: 10.1099/0022-1317-75-6-1441. [DOI] [PubMed] [Google Scholar]
  57. Tan R., Chen L., Buettner J. A., Hudson D., Frankel A. D. RNA recognition by an isolated alpha helix. Cell. 1993 Jun 4;73(5):1031–1040. doi: 10.1016/0092-8674(93)90280-4. [DOI] [PubMed] [Google Scholar]
  58. Tan R., Frankel A. D. Costabilization of peptide and RNA structure in an HIV Rev peptide-RRE complex. Biochemistry. 1994 Dec 6;33(48):14579–14585. doi: 10.1021/bi00252a025. [DOI] [PubMed] [Google Scholar]
  59. Tan R., Frankel A. D. Structural variety of arginine-rich RNA-binding peptides. Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5282–5286. doi: 10.1073/pnas.92.12.5282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Tao J., Frankel A. D. Electrostatic interactions modulate the RNA-binding and transactivation specificities of the human immunodeficiency virus and simian immunodeficiency virus Tat proteins. Proc Natl Acad Sci U S A. 1993 Feb 15;90(4):1571–1575. doi: 10.1073/pnas.90.4.1571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Tao J., Frankel A. D. Specific binding of arginine to TAR RNA. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2723–2726. doi: 10.1073/pnas.89.7.2723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Taschner P. E., van der Kuyl A. C., Neeleman L., Bol J. F. Replication of an incomplete alfalfa mosaic virus genome in plants transformed with viral replicase genes. Virology. 1991 Apr;181(2):445–450. doi: 10.1016/0042-6822(91)90876-d. [DOI] [PubMed] [Google Scholar]
  63. Theunissen O., Rudt F., Guddat U., Mentzel H., Pieler T. RNA and DNA binding zinc fingers in Xenopus TFIIIA. Cell. 1992 Nov 13;71(4):679–690. doi: 10.1016/0092-8674(92)90601-8. [DOI] [PubMed] [Google Scholar]
  64. Valegård K., Murray J. B., Stockley P. G., Stonehouse N. J., Liljas L. Crystal structure of an RNA bacteriophage coat protein-operator complex. Nature. 1994 Oct 13;371(6498):623–626. doi: 10.1038/371623a0. [DOI] [PubMed] [Google Scholar]
  65. Van Vloten-Doting L., Jaspars E. M. The uncoating of alfalfa mosaic virus by its own RNA. Virology. 1972 Jun;48(3):699–708. doi: 10.1016/0042-6822(72)90154-7. [DOI] [PubMed] [Google Scholar]
  66. Van der Kuyl A. C., Neeleman L., Bol J. F. Role of alfalfa mosaic virus coat protein in regulation of the balance between viral plus and minus strand RNA synthesis. Virology. 1991 Nov;185(1):496–499. doi: 10.1016/0042-6822(91)90807-n. [DOI] [PubMed] [Google Scholar]
  67. Vriend G., Verduin B. J., Hemminga M. A. Role of the N-terminal part of the coat protein in the assembly of cowpea chlorotic mottle virus. A 500 MHz proton nuclear magnetic resonance study and structural calculations. J Mol Biol. 1986 Oct 5;191(3):453–460. doi: 10.1016/0022-2836(86)90140-3. [DOI] [PubMed] [Google Scholar]
  68. Weeks K. M., Ampe C., Schultz S. C., Steitz T. A., Crothers D. M. Fragments of the HIV-1 Tat protein specifically bind TAR RNA. Science. 1990 Sep 14;249(4974):1281–1285. doi: 10.1126/science.2205002. [DOI] [PubMed] [Google Scholar]
  69. Yusibov V. M., Loesch-Fries L. S. N-terminal basic amino acids of alfalfa mosaic virus coat protein involved in the initiation of infection. Virology. 1995 Apr 1;208(1):405–407. doi: 10.1006/viro.1995.1168. [DOI] [PubMed] [Google Scholar]
  70. van Beynum G. M., de Graaf J. M., Castel A., Kraal B., Bosch L. Structural studies on the coat protein of alfalfa mosaic virus. The complete primary structure. Eur J Biochem. 1977 Jan 3;72(1):63–78. doi: 10.1111/j.1432-1033.1977.tb11225.x. [DOI] [PubMed] [Google Scholar]
  71. van Vloten-Doting L. Coat protein is required for infectivity of tobacco streak virus: biological equivalence of the coat proteins of tobacco streak and alfalfa mosaic viruses. Virology. 1975 May;65(1):215–225. doi: 10.1016/0042-6822(75)90022-7. [DOI] [PubMed] [Google Scholar]
  72. van der Graaf M., Hemminga M. A. Conformational studies on a peptide fragment representing the RNA-binding N-terminus of a viral coat protein using circular dichroism and NMR spectroscopy. Eur J Biochem. 1991 Oct 15;201(2):489–494. doi: 10.1111/j.1432-1033.1991.tb16307.x. [DOI] [PubMed] [Google Scholar]
  73. van der Graaf M., Scheek R. M., van der Linden C. C., Hemminga M. A. Conformation of a pentacosapeptide representing the RNA-binding N-terminus of cowpea chlorotic mottle virus coat protein in the presence of oligophosphates: a two-dimensional proton nuclear magnetic resonance and distance geometry study. Biochemistry. 1992 Sep 29;31(38):9177–9182. doi: 10.1021/bi00153a009. [DOI] [PubMed] [Google Scholar]
  74. van der Graaf M., van Mierlo C. P., Hemminga M. A. Solution conformation of a peptide fragment representing a proposed RNA-binding site of a viral coat protein studied by two-dimensional NMR. Biochemistry. 1991 Jun 11;30(23):5722–5727. doi: 10.1021/bi00237a013. [DOI] [PubMed] [Google Scholar]
  75. van der Vossen E. A., Neeleman L., Bol J. F. Early and late functions of alfalfa mosaic virus coat protein can be mutated separately. Virology. 1994 Aug 1;202(2):891–903. doi: 10.1006/viro.1994.1411. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES