Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1991 Mar;10(3):505–511. doi: 10.1002/j.1460-2075.1991.tb07976.x

Evolution of immunoglobulin light chain genes: analysis of Xenopus IgL isotypes and their contribution to antibody diversity.

J Schwager 1, N Bürckert 1, M Schwager 1, M Wilson 1
PMCID: PMC452677  PMID: 1705882

Abstract

The amphibian Xenopus laevis expresses several types of immunoglobulin light chain (IgL). cDNA clones for two IgL isotypes, C sigma 1 and C sigma 2, were analysed. C sigma is expressed in spleen and mitogen-stimulated B cells, like another Xenopus IgL type, termed C rho. C sigma shares less than 33% residues with C rho or with CL regions of shark, chicken and mammals. This suggests that C sigma diverged from a common ancestor of CL regions before or at the emergence of amphibians. Two families of VL elements, V sigma 1 and V sigma 2 are associated with C sigma (but not with C rho). They rearrange to their own set of JL elements, J sigma 1 and J sigma 2, which are poorly related to other J elements of the Ig gene family. The Xenopus genome contains a few V sigma 2 and multiple V sigma 1 elements (comparable with mammalian V kappa), but only two C sigma genes. Thus, the organization and expression of Xenopus IgL loci are apparently similar to mammalian IgL loci but different from shark and chicken IgL loci. Only a few VL elements are expressed, since cDNA clones show extensive sharing of CDR1 and CDR2 sequences; some clones differ only in CDR3. Rearranging VL and JL elements increases CDR3 diversity in both V sigma families, but abortive rearrangements are frequent in V sigma 1 regions. The very poor heterogeneity of expressed VL elements therefore appears to limit antibody diversity in Xenopus.

Full text

PDF
510

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alt F. W., Blackwell T. K., Yancopoulos G. D. Development of the primary antibody repertoire. Science. 1987 Nov 20;238(4830):1079–1087. doi: 10.1126/science.3317825. [DOI] [PubMed] [Google Scholar]
  2. Brandt D. C., Griessen M., Du Pasquier L., Jaton J. C. Antibody diversity in amphibians: evidence for the inheritance of idiotypic specificities in isogenic Xenopus. Eur J Immunol. 1980 Oct;10(10):731–736. doi: 10.1002/eji.1830101002. [DOI] [PubMed] [Google Scholar]
  3. Chothia C., Boswell D. R., Lesk A. M. The outline structure of the T-cell alpha beta receptor. EMBO J. 1988 Dec 1;7(12):3745–3755. doi: 10.1002/j.1460-2075.1988.tb03258.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dayhoff M. O., Barker W. C., Hunt L. T. Establishing homologies in protein sequences. Methods Enzymol. 1983;91:524–545. doi: 10.1016/s0076-6879(83)91049-2. [DOI] [PubMed] [Google Scholar]
  5. Du Pasquier L. Antibody diversity in lower vertebrates--why is it so restricted? Nature. 1982 Mar 25;296(5855):311–313. doi: 10.1038/296311a0. [DOI] [PubMed] [Google Scholar]
  6. Du Pasquier L., Schwager J., Flajnik M. F. The immune system of Xenopus. Annu Rev Immunol. 1989;7:251–275. doi: 10.1146/annurev.iy.07.040189.001343. [DOI] [PubMed] [Google Scholar]
  7. Du Pasquier L., Wabl M. R. Antibody diversity in amphibians: inheritance of isoelectric focusing antibody patterns in isogenic frogs. Eur J Immunol. 1978 Jun;8(6):428–433. doi: 10.1002/eji.1830080611. [DOI] [PubMed] [Google Scholar]
  8. Hadji-Azimi I., Coosemans V., Canicatti C. B-lymphocyte populations in Xenopus laevis. Dev Comp Immunol. 1990 Winter;14(1):69–84. doi: 10.1016/0145-305x(90)90009-4. [DOI] [PubMed] [Google Scholar]
  9. Hadji-Azimi I., Schwager J., Thiebaud C. B-lymphocyte differentiation in Xenopus laevis larvae. Dev Biol. 1982 Apr;90(2):253–258. doi: 10.1016/0012-1606(82)90374-8. [DOI] [PubMed] [Google Scholar]
  10. Hadji-Azimi I., Schwager J. Xenopus laevis larval thymocytes do not express surface immunoglobulin. Cell Immunol. 1980 Aug 1;53(2):389–394. doi: 10.1016/0008-8749(80)90339-1. [DOI] [PubMed] [Google Scholar]
  11. Hadji-Azimi I. Structural studies of the Xenopus 19S immunoglobulin and 7S immunoglobulin and two immunoglobulin-like proteins. Immunology. 1975 Mar;28(3):419–429. [PMC free article] [PubMed] [Google Scholar]
  12. Haire R. N., Amemiya C. T., Suzuki D., Litman G. W. Eleven distinct VH gene families and additional patterns of sequence variation suggest a high degree of immunoglobulin gene complexity in a lower vertebrate, Xenopus laevis. J Exp Med. 1990 May 1;171(5):1721–1737. doi: 10.1084/jem.171.5.1721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hinds K. R., Litman G. W. Major reorganization of immunoglobulin VH segmental elements during vertebrate evolution. Nature. 1986 Apr 10;320(6062):546–549. doi: 10.1038/320546a0. [DOI] [PubMed] [Google Scholar]
  14. Hsu E., Du Pasquier L. Studies on Xenopus immunoglobulins using monoclonal antibodies. Mol Immunol. 1984 Apr;21(4):257–270. doi: 10.1016/0161-5890(84)90096-8. [DOI] [PubMed] [Google Scholar]
  15. Hsu E., Flajnik M. F., Du Pasquier L. A third immunoglobulin class in amphibians. J Immunol. 1985 Sep;135(3):1998–2004. [PubMed] [Google Scholar]
  16. Hsu E., Schwager J., Alt F. W. Evolution of immunoglobulin genes: VH families in the amphibian Xenopus. Proc Natl Acad Sci U S A. 1989 Oct;86(20):8010–8014. doi: 10.1073/pnas.86.20.8010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mikoryak C. A., Steiner L. A. Amino acid sequence of the constant region of immunoglobulin light chains from Rana catesbeiana. Mol Immunol. 1988 Aug;25(8):695–703. doi: 10.1016/0161-5890(88)90105-8. [DOI] [PubMed] [Google Scholar]
  18. Reynaud C. A., Anquez V., Dahan A., Weill J. C. A single rearrangement event generates most of the chicken immunoglobulin light chain diversity. Cell. 1985 Feb;40(2):283–291. doi: 10.1016/0092-8674(85)90142-4. [DOI] [PubMed] [Google Scholar]
  19. Reynaud C. A., Dahan A., Anquez V., Weill J. C. Somatic hyperconversion diversifies the single Vh gene of the chicken with a high incidence in the D region. Cell. 1989 Oct 6;59(1):171–183. doi: 10.1016/0092-8674(89)90879-9. [DOI] [PubMed] [Google Scholar]
  20. Schluter S. F., Hohman V. S., Edmundson A. B., Marchalonis J. J. Evolution of immunoglobulin light chains: cDNA clones specifying sandbar shark constant regions. Proc Natl Acad Sci U S A. 1989 Dec;86(24):9961–9965. doi: 10.1073/pnas.86.24.9961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Schwager J., Bürckert N., Courtet M., Du Pasquier L. Genetic basis of the antibody repertoire in Xenopus: analysis of the Vh diversity. EMBO J. 1989 Oct;8(10):2989–3001. doi: 10.1002/j.1460-2075.1989.tb08449.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Schwager J., Grossberger D., Du Pasquier L. Organization and rearrangement of immunoglobulin M genes in the amphibian Xenopus. EMBO J. 1988 Aug;7(8):2409–2415. doi: 10.1002/j.1460-2075.1988.tb03086.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Schwager J., Hadji-Azimi I. Anti-immunoglobulin M induces both B-lymphocyte proliferation and differentiation in Xenopus laevis. Differentiation. 1985;30(1):29–34. doi: 10.1111/j.1432-0436.1985.tb00509.x. [DOI] [PubMed] [Google Scholar]
  24. Schwager J., Hadji-Azimi I. Mitogen-induced B-cell differentiation in Xenopus laevis. Differentiation. 1984;27(3):182–188. doi: 10.1111/j.1432-0436.1984.tb01426.x. [DOI] [PubMed] [Google Scholar]
  25. Schwager J., Mikoryak C. A., Steiner L. A. Amino acid sequence of heavy chain from Xenopus laevis IgM deduced from cDNA sequence: implications for evolution of immunoglobulin domains. Proc Natl Acad Sci U S A. 1988 Apr;85(7):2245–2249. doi: 10.1073/pnas.85.7.2245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Shamblott M. J., Litman G. W. Genomic organization and sequences of immunoglobulin light chain genes in a primitive vertebrate suggest coevolution of immunoglobulin gene organization. EMBO J. 1989 Dec 1;8(12):3733–3739. doi: 10.1002/j.1460-2075.1989.tb08549.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Tonegawa S. Somatic generation of antibody diversity. Nature. 1983 Apr 14;302(5909):575–581. doi: 10.1038/302575a0. [DOI] [PubMed] [Google Scholar]
  28. Wang A. C., Tung E., Fudenberg H. H., Hadji-Azimi I. Immunoglobulin evolution: chemical study of clawed toad (Xenopus laevis) heavy and light chains. J Immunogenet. 1978 Dec;5(6):355–364. doi: 10.1111/j.1744-313x.1978.tb00665.x. [DOI] [PubMed] [Google Scholar]
  29. Ward E. S., Güssow D., Griffiths A. D., Jones P. T., Winter G. Binding activities of a repertoire of single immunoglobulin variable domains secreted from Escherichia coli. Nature. 1989 Oct 12;341(6242):544–546. doi: 10.1038/341544a0. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES