Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1991 Apr;10(4):885–892. doi: 10.1002/j.1460-2075.1991.tb08021.x

Identification of the regulatory phosphorylation sites in pp42/mitogen-activated protein kinase (MAP kinase).

D M Payne 1, A J Rossomando 1, P Martino 1, A K Erickson 1, J H Her 1, J Shabanowitz 1, D F Hunt 1, M J Weber 1, T W Sturgill 1
PMCID: PMC452730  PMID: 1849075

Abstract

Mitogen-activated protein kinase (MAP kinase) is a 42 kd serine/threonine protein kinase whose enzymatic activity requires phosphorylation of both tyrosyl and threonyl residues. As a step in elucidating the mechanism(s) for activation of this enzyme, we have determined the sites of regulatory phosphorylation. Following proteolytic digestion of 32P-labeled pp42/MAP kinase with trypsin, only a single phosphopeptide was detected by two-dimensional peptide mapping, and this peptide contained both phosphotyrosine and phosphothreonine. The amino acid sequence of the peptide, including the phosphorylation sites, was determined using a combination of Fourier transform mass spectrometry and collision-activated dissociation tandem mass spectrometry with electrospray ionization. The sequence for the pp42/MAP kinase tryptic phosphopeptide is similar (but not identical) to a sequence present in the ERK1- and KSS1-encoded kinases. The two phosphorylation sites are separated by only a single residue. The regulation of activity by dual phosphorylations at closely spaced threonyl and tyrosyl residues has a functional correlate in p34cdc2, and may be characteristic of a family of protein kinases regulating cell cycle transitions.

Full text

PDF
888

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahn N. G., Krebs E. G. Evidence for an epidermal growth factor-stimulated protein kinase cascade in Swiss 3T3 cells. Activation of serine peptide kinase activity by myelin basic protein kinases in vitro. J Biol Chem. 1990 Jul 15;265(20):11495–11501. [PubMed] [Google Scholar]
  2. Ahn N. G., Weiel J. E., Chan C. P., Krebs E. G. Identification of multiple epidermal growth factor-stimulated protein serine/threonine kinases from Swiss 3T3 cells. J Biol Chem. 1990 Jul 15;265(20):11487–11494. [PubMed] [Google Scholar]
  3. Anderson N. G., Maller J. L., Tonks N. K., Sturgill T. W. Requirement for integration of signals from two distinct phosphorylation pathways for activation of MAP kinase. Nature. 1990 Feb 15;343(6259):651–653. doi: 10.1038/343651a0. [DOI] [PubMed] [Google Scholar]
  4. Boulton T. G., Gregory J. S., Jong S. M., Wang L. H., Ellis L., Cobb M. H. Evidence for insulin-dependent activation of S6 and microtubule-associated protein-2 kinases via a human insulin receptor/v-ros hybrid. J Biol Chem. 1990 Feb 15;265(5):2713–2719. [PubMed] [Google Scholar]
  5. Boulton T. G., Yancopoulos G. D., Gregory J. S., Slaughter C., Moomaw C., Hsu J., Cobb M. H. An insulin-stimulated protein kinase similar to yeast kinases involved in cell cycle control. Science. 1990 Jul 6;249(4964):64–67. doi: 10.1126/science.2164259. [DOI] [PubMed] [Google Scholar]
  6. Courchesne W. E., Kunisawa R., Thorner J. A putative protein kinase overcomes pheromone-induced arrest of cell cycling in S. cerevisiae. Cell. 1989 Sep 22;58(6):1107–1119. doi: 10.1016/0092-8674(89)90509-6. [DOI] [PubMed] [Google Scholar]
  7. Ely C. M., Oddie K. M., Litz J. S., Rossomando A. J., Kanner S. B., Sturgill T. W., Parsons S. J. A 42-kD tyrosine kinase substrate linked to chromaffin cell secretion exhibits an associated MAP kinase activity and is highly related to a 42-kD mitogen-stimulated protein in fibroblasts. J Cell Biol. 1990 Mar;110(3):731–742. doi: 10.1083/jcb.110.3.731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Erickson A. K., Payne D. M., Martino P. A., Rossomando A. J., Shabanowitz J., Weber M. J., Hunt D. F., Sturgill T. W. Identification by mass spectrometry of threonine 97 in bovine myelin basic protein as a specific phosphorylation site for mitogen-activated protein kinase. J Biol Chem. 1990 Nov 15;265(32):19728–19735. [PubMed] [Google Scholar]
  9. Erikson R. L., Alcorta D., Bedard P. A., Blenis J., Biemann H. P., Erikson E., Jones S. W., Maller J. L., Martins T. J., Simmons D. L. Molecular analyses of gene products associated with the response of cells to mitogenic stimulation. Cold Spring Harb Symp Quant Biol. 1988;53(Pt 1):143–151. doi: 10.1101/sqb.1988.053.01.020. [DOI] [PubMed] [Google Scholar]
  10. Flotow H., Roach P. J. Synergistic phosphorylation of rabbit muscle glycogen synthase by cyclic AMP-dependent protein kinase and casein kinase I. Implications for hormonal regulation of glycogen synthase. J Biol Chem. 1989 Jun 5;264(16):9126–9128. [PubMed] [Google Scholar]
  11. Gould K. L., Nurse P. Tyrosine phosphorylation of the fission yeast cdc2+ protein kinase regulates entry into mitosis. Nature. 1989 Nov 2;342(6245):39–45. doi: 10.1038/342039a0. [DOI] [PubMed] [Google Scholar]
  12. Gregory J. S., Boulton T. G., Sang B. C., Cobb M. H. An insulin-stimulated ribosomal protein S6 kinase from rabbit liver. J Biol Chem. 1989 Nov 5;264(31):18397–18401. [PubMed] [Google Scholar]
  13. Griffin P. R., Kumar S., Shabanowitz J., Charbonneau H., Namkung P. C., Walsh K. A., Hunt D. F., Petra P. H. The amino acid sequence of the sex steroid-binding protein of rabbit serum. J Biol Chem. 1989 Nov 15;264(32):19066–19075. [PubMed] [Google Scholar]
  14. Hanks S. K., Quinn A. M., Hunter T. The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science. 1988 Jul 1;241(4861):42–52. doi: 10.1126/science.3291115. [DOI] [PubMed] [Google Scholar]
  15. Hunkapiller M. W., Lujan E., Ostrander F., Hood L. E. Isolation of microgram quantities of proteins from polyacrylamide gels for amino acid sequence analysis. Methods Enzymol. 1983;91:227–236. doi: 10.1016/s0076-6879(83)91019-4. [DOI] [PubMed] [Google Scholar]
  16. Hunt D. F., Shabanowitz J., Yates J. R., 3rd, Zhu N. Z., Russell D. H., Castro M. E. Tandem quadrupole Fourier-transform mass spectrometry of oligopeptides and small proteins. Proc Natl Acad Sci U S A. 1987 Feb;84(3):620–623. doi: 10.1073/pnas.84.3.620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hunt D. F., Yates J. R., 3rd, Shabanowitz J., Winston S., Hauer C. R. Protein sequencing by tandem mass spectrometry. Proc Natl Acad Sci U S A. 1986 Sep;83(17):6233–6237. doi: 10.1073/pnas.83.17.6233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Jensen D. E., Sando J. J. Absence of protein kinase C in nuclei of EL4 mouse thymoma cells. Cancer Res. 1987 Jul 15;47(14):3868–3872. [PubMed] [Google Scholar]
  19. Kemp B. E., Pearson R. B. Protein kinase recognition sequence motifs. Trends Biochem Sci. 1990 Sep;15(9):342–346. doi: 10.1016/0968-0004(90)90073-k. [DOI] [PubMed] [Google Scholar]
  20. L'Allemain G., Sturgill T. W., Weber M. J. Defective regulation of mitogen-activated protein kinase activity in a 3T3 cell variant mitogenically nonresponsive to tetradecanoyl phorbol acetate. Mol Cell Biol. 1991 Feb;11(2):1002–1008. doi: 10.1128/mcb.11.2.1002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Morla A. O., Draetta G., Beach D., Wang J. Y. Reversible tyrosine phosphorylation of cdc2: dephosphorylation accompanies activation during entry into mitosis. Cell. 1989 Jul 14;58(1):193–203. doi: 10.1016/0092-8674(89)90415-7. [DOI] [PubMed] [Google Scholar]
  22. Ray L. B., Sturgill T. W. Characterization of insulin-stimulated microtubule-associated protein kinase. Rapid isolation and stabilization of a novel serine/threonine kinase from 3T3-L1 cells. J Biol Chem. 1988 Sep 5;263(25):12721–12727. [PubMed] [Google Scholar]
  23. Ray L. B., Sturgill T. W. Insulin-stimulated microtubule-associated protein kinase is phosphorylated on tyrosine and threonine in vivo. Proc Natl Acad Sci U S A. 1988 Jun;85(11):3753–3757. doi: 10.1073/pnas.85.11.3753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Ray L. B., Sturgill T. W. Rapid stimulation by insulin of a serine/threonine kinase in 3T3-L1 adipocytes that phosphorylates microtubule-associated protein 2 in vitro. Proc Natl Acad Sci U S A. 1987 Mar;84(6):1502–1506. doi: 10.1073/pnas.84.6.1502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Roach P. J. Control of glycogen synthase by hierarchal protein phosphorylation. FASEB J. 1990 Sep;4(12):2961–2968. [PubMed] [Google Scholar]
  26. Rossomando A. J., Payne D. M., Weber M. J., Sturgill T. W. Evidence that pp42, a major tyrosine kinase target protein, is a mitogen-activated serine/threonine protein kinase. Proc Natl Acad Sci U S A. 1989 Sep;86(18):6940–6943. doi: 10.1073/pnas.86.18.6940. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sanghera J. S., Paddon H. B., Bader S. A., Pelech S. L. Purification and characterization of a maturation-activated myelin basic protein kinase from sea star oocytes. J Biol Chem. 1990 Jan 5;265(1):52–57. [PubMed] [Google Scholar]
  28. Stern D. F., Zheng P., Beidler D. R., Zerillo C. Spk1, a new kinase from Saccharomyces cerevisiae, phosphorylates proteins on serine, threonine, and tyrosine. Mol Cell Biol. 1991 Feb;11(2):987–1001. doi: 10.1128/mcb.11.2.987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sturgill T. W., Ray L. B., Erikson E., Maller J. L. Insulin-stimulated MAP-2 kinase phosphorylates and activates ribosomal protein S6 kinase II. Nature. 1988 Aug 25;334(6184):715–718. doi: 10.1038/334715a0. [DOI] [PubMed] [Google Scholar]
  30. Whittaker R. G., Moss B. A. Comparative peptide mapping at the nanomole level. Anal Biochem. 1981 Jan 1;110(1):56–60. doi: 10.1016/0003-2697(81)90111-1. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES