Skip to main content
Genomics Data logoLink to Genomics Data
. 2015 Apr 15;4:150–152. doi: 10.1016/j.gdata.2015.04.010

Expression profiling of wild type and β-catenin gene disrupted human BxPC-3 pancreatic adenocarcinoma cells

Petter Angell Olsen 1,, Kaja Lund 1, Stefan Krauss 1
PMCID: PMC4535937  PMID: 26484203

Abstract

To study the role of WNT/β-catenin signaling in pancreatic adenocarcinoma, human BxPC-3 cell lines deficient of the central canonical WNT signaling protein β-catenin were established by using zinc-finger nuclease mediated targeted genomic disruption of the β-catenin gene (CTNNB1). Comparison of the global transcription levels in wild type cells with two β-catenin gene disrupted clones identified 85 transcripts that were the most differentially regulated. Gene ontology (GO) term enrichment analysis of these transcripts identified “cell adhesion” as the most significantly enriched GO term. Here we describe the data from the transcription profiling analysis published in the article “Implications of Targeted Genomic Disruption of β-Catenin in BxPC-3 Pancreatic Adenocarcinoma Cells” [1]. Data have been deposited to the Gene Expression Omnibus (GEO) database repository with the dataset identifier GSE63072.

Keywords: WNT, Beta-catenin, Pancreatic cancer


Specifications
Organism/cell line/tissue Human BxPC-3 pancreatic adenocarcinoma cell line
Sex Female
Sequencer or array type Illumina HumanHT-12 V4.0 expression beadchip
Data format Raw and processed
Experimental factors Wild type versus β-catenin deficient BxPC-3 cells
Experimental features BxPC-3 cells deficient of β-catenin was generated by zinc-finger nuclease mediated targeted gene disruption.
Consent N/A
Sample source location BxPC-3 wild type cell line was obtained from ATCC (CRL-1687)

Direct link to deposited data

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63072.

Experimental design, materials and methods

Cell culture

The human pancreatic adenocarcinoma BxPC-3 (ATCC CRL-1687) epithelial cell line was grown in RPMI-1640 (Sigma-Aldrich, St Louis, MO, USA) supplemented with 10% fetal bovine serum, 1% penicillin/streptomycin and 0.002 × insulin–transferrin–selenium (Life Technologies, Carlsbad, CA, USA) cells were propagated at 37 °C in a humidified atmosphere containing 5% CO2.

Generation of β-catenin deficient cells

BxPC-3 cells with targeted disruption of the β-catenin gene (CTNNB1) were established using CompoZr custom Zinc Finger Nucleases (ZFNs) (Sigma-Aldrich). Briefly, following transfection of the cells with ZFN mRNA targeting exon 3 of the CTNNB1 gene, monoclonal cell populations were obtained by limiting dilution cloning and analyzed for β-catenin expression. From 150 initial clones five β-catenin gene disrupted clones negative for β-catenin expression were identified and selected for further analysis (clone #4, #31, #79, #93 and #111).

RNA isolation microarray analysis

Total RNA from exponentially growing wild type BxPC-3 cells and β-catenin gene disrupted clones #4 and #111 was isolated using the GenElute Mammalian Total RNA Purification Kit (Sigma-Aldrich). The RNA was subjected to microarray analysis using Illumina HumanHT-12 v4 Expression BeadChips (Illumina, CA, USA) at the Norwegian Genomics Consortium core facility (Oslo University Hospital, Norway). For each sample 6 biological replicates were analyzed. Data extraction and quality control was performed in GenomeStudio (Illumina) and the data analysis was performed using J-Express [2].

Differential expression quantification and classification

To identify the most differentially expressed genes between wild type BxPC-3 cells and the β-catenin gene disrupted clones #4 and #111 (average) Significance Analysis of Microarrays (SAM) analysis was carried out [3]. From the SAM analysis a threshold of fold change > 2 and q-value = 0 was selected to identify the most regulated probes. In Table 1 the resulting list of the 85 most differentially regulated probes is shown. To identify relevant shared biological functions associated with the identified 85 most differentially regulated transcripts, Gene Ontology (GO) term enrichment analysis was done using DAVID [4] with the GOTERM_BP_2 annotation (Table 2).

Table 1.

List of the most differentially regulated probes from significance analysis of microarrays (SAM) comparing wild type BxPC3 cells and the gene disrupted clones #4 and #111 (average).

The list was generated by selecting the probes that displayed a fold change > 2 and q-value = 0 in the SAM analysis of all probes. The list is sorted by the d-score and genes up- and down-regulated in the gene disrupted clones have a positive and a negative fold change value, respectively.

Probe_Id Symbol ILMN_GENE d-Score Fold change q-Value
ILMN_1686664 MT2A MT2A 22.155 2.45 0
ILMN_1659688 LGALS3BP LGALS3BP 15.656 2.358 0
ILMN_2042771 PTTG1 PTTG1 14.42 2.109 0
ILMN_1672503 DPYSL2 DPYSL2 12.37 2.368 0
ILMN_2183409 SCARB1 SCARB1 − 12.283 − 2.43 0
ILMN_1673356 FAM83C FAM83C − 11.125 − 2.327 0
ILMN_3247895 LOC728188 LOC728188 10.777 2.446 0
ILMN_1713147 MCRS1 MCRS1 10.703 2.178 0
ILMN_1655347 SCGB1A1 SCGB1A1 − 10.414 − 2.055 0
ILMN_2320250 NOL6 NOL6 − 10.404 − 2.087 0
ILMN_1799098 LOC652846 LOC652846 10.398 2.289 0
ILMN_1750324 IGFBP5 IGFBP5 − 9.748 − 6.458 0
ILMN_1733756 COL12A1 COL12A1 − 9.342 − 2.076 0
ILMN_2145116 TMEM173 TMEM173 9.246 2.264 0
ILMN_1811972 MYCBP2 MYCBP2 − 9.226 − 2.024 0
ILMN_1678707 TAF15 TAF15 − 9.141 − 2.081 0
ILMN_1765641 SEMA3A SEMA3A − 9.018 − 2.024 0
ILMN_1753196 PTTG1 PTTG1 8.995 2.523 0
ILMN_1673023 EP400 EP400 − 8.897 − 2.068 0
ILMN_1765701 LOC399942 LOC399942 8.74 2.077 0
ILMN_2400759 CPVL CPVL 8.644 2.023 0
ILMN_1661366 PGAM1 PGAM1 8.606 2.736 0
ILMN_1740233 UGT1A10 UGT1A10 8.476 2.096 0
ILMN_1676358 RALB RALB 8.265 2.493 0
ILMN_2321153 MUC4 MUC4 − 8.15 − 2.477 0
ILMN_3247578 FAT1 FAT1 − 8.034 − 2.08 0
ILMN_2411915 ATG4B ATG4B 7.981 2.191 0
ILMN_1754795 FAT1 FAT1 − 7.879 − 3.211 0
ILMN_1678757 BCYRN1 BCYRN1 − 7.775 − 3.991 0
ILMN_1695917 C5orf15 C5ORF15 7.679 2.148 0
ILMN_2395389 PSMC4 PSMC4 7.197 2.627 0
ILMN_2132982 IGFBP5 IGFBP5 − 7.174 − 4.242 0
ILMN_1676763 PIPSL PIPSL 7.021 2.131 0
ILMN_2109708 ECGF1 ECGF1 6.793 2.086 0
ILMN_1795778 P4HA2 P4HA2 6.646 2.211 0
ILMN_2095610 ANXA8 ANXA8 6.489 2.124 0
ILMN_1691563 GAGE12I GAGE12I − 6.241 − 2.119 0
ILMN_1704342 UBE3C UBE3C − 6.183 − 2.136 0
ILMN_1779353 PUS7 PUS7 − 6.17 − 2.483 0
ILMN_2326737 PPIE PPIE 6.061 2.363 0
ILMN_1800131 LOC652826 LOC652826 6.011 2.061 0
ILMN_1788108 TXNDC5 TXNDC5 − 5.947 − 2 0
ILMN_2332105 WRNIP1 WRNIP1 − 5.922 − 2.222 0
ILMN_1687887 PSMC4 PSMC4 5.851 2.251 0
ILMN_1685798 MAGEA6 MAGEA6 5.832 2.07 0
ILMN_1744765 KRT4 KRT4 − 5.788 − 3.158 0
ILMN_3308295 MIR205 MIR205 5.548 2.083 0
ILMN_3204734 LOC100134648 LOC100134648 5.337 2.551 0
ILMN_1766762 DYNLRB1 DYNLRB1 5.207 2.955 0
ILMN_1732074 LOC648210 LOC648210 5.099 2.925 0
ILMN_2261076 NEDD9 NEDD9 − 5.097 − 2.074 0
ILMN_1681301 AIM2 AIM2 5.083 2.042 0
ILMN_2371169 ZYX ZYX − 5.063 − 2.451 0
ILMN_2174127 DCBLD2 DCBLD2 − 5.038 − 2.605 0
ILMN_1696187 PYGL PYGL − 5.02 − 2.216 0
ILMN_1690259 RAE1 RAE1 4.98 2.121 0
ILMN_1680246 MAT2B MAT2B 4.961 3.137 0
ILMN_1798454 MAD2L1BP MAD2L1BP 4.925 2.136 0
ILMN_1711702 CLEC2D CLEC2D 4.921 2.116 0
ILMN_1753449 CST1 CST1 4.802 2.783 0
ILMN_1746465 FJX1 FJX1 − 4.758 − 2.225 0
ILMN_1715175 MET MET − 4.688 − 2.751 0
ILMN_1795342 MLPH MLPH 4.626 2.108 0
ILMN_1703108 UBE2L6 UBE2L6 4.599 2.721 0
ILMN_2129572 F3 F3 − 4.593 − 2.65 0
ILMN_1660345 NGRN NGRN 4.578 2.387 0
ILMN_1658053 DYNLRB1 DYNLRB1 4.504 3.005 0
ILMN_2150856 SERPINB2 SERPINB2 − 4.471 − 2.41 0
ILMN_1664543 IFIT3 IFIT3 4.47 2.218 0
ILMN_1766650 FOXA1 FOXA1 − 4.469 − 2.072 0
ILMN_1829845 HS.553301 HS.553301 4.408 3.363 0
ILMN_3231944 LOC100130516 LOC100130516 − 4.399 − 6.137 0
ILMN_1784602 CDKN1A CDKN1A 4.381 2.092 0
ILMN_1768470 EIF4G1 EIF4G1 − 4.297 − 2.061 0
ILMN_2405233 FAM133B FAM133B − 4.278 − 2.054 0
ILMN_2148527 H19 H19 − 4.25 − 7.3 0
ILMN_1756071 MFGE8 MFGE8 4.125 3.204 0
ILMN_1739645 ANLN ANLN − 4.096 -2.037 0
ILMN_3215206 LOC100133836 LOC100133836 4.001 2.078 0
ILMN_1673880 EFEMP1 EFEMP1 3.963 2.289 0
ILMN_2073604 EBP EBP 3.916 2.207 0
ILMN_1777765 C12orf10 C12ORF10 3.909 2.098 0
ILMN_2239754 IFIT3 IFIT3 3.879 4.952 0
ILMN_1774077 GBP2 GBP2 3.856 3.317 0
ILMN_2279635 EIF4G2 EIF4G2 3.832 2.469 0

Table 2.

Gene ontology enrichment analysis of the most differentially regulated transcripts between the wild type BxPC3 cells and the β-catenin deficient clones #4 and #111 (average).

The GO analysis was performed using the top 85 most regulated transcripts from Table 1.

Category Term Count % Genes/transcripts Fold enrichment Bonferroni
GOTERM_BP_2 GO:0007155 ~ cell adhesion 9 1.4 DCBLD2, LGALS3BP, FAT1, NEDD9, COL12A1, SCARB1, MFGE8, ZYX, MUC4 3.26 0.46
GOTERM_BP_2 GO:0008037 ~ cell recognition 3 0.5 SCARB1, MFGE8, SEMA3A 13.83 0.90
GOTERM_BP_2 GO:0040008 ~ regulation of growth 5 0.8 DCBLD2, CDKN1A, NEDD9, SEMA3A, IGFBP5 3.72 0.99
GOTERM_BP_2 GO:0065008 ~ regulation of biological quality 11 1.8 DCBLD2, UGT1A10, CDKN1A, ANXA8, PYGL, TXNDC5, F3, FOXA1, MT2A, SCARB1, SEMA3A 1.90 1.00
GOTERM_BP_2 GO:0006950 ~ response to stress 12 1.9 DCBLD2, UGT1A10, CDKN1A, TMEM173, LGALS3BP, ANXA8, F3, WRNIP1, GAGE12I, SERPINB2, SCARB1, PTTG1 1.81 1.00
GOTERM_BP_2 GO:0009605 ~ response to external stimulus 8 1.3 DCBLD2, UGT1A10, CDKN1A, ANXA8, F3, SERPINB2, SCARB1, SEMA3A 2.22 1.00
GOTERM_BP_2 GO:0042445 ~ hormone metabolic process 3 0.5 UGT1A10, FOXA1, SCARB1 7.18 1.00
GOTERM_BP_2 GO:0022402 ~ cell cycle process 6 1.0 EIF4G2, CDKN1A, PSMC4, NEDD9, ANLN, PTTG1, LOC652826 2.69 1.00
GOTERM_BP_2 GO:0045926 ~ negative regulation of growth 3 0.5 DCBLD2, CDKN1A, SEMA3A 6.91 1.00
GOTERM_BP_2 GO:0032879 ~ regulation of localization 6 1.0 F3, SCARB1, MFGE8, SEMA3A, IGFBP5, MYCBP2 2.49 1.00
GOTERM_BP_2 GO:0044419 ~ interspecies interaction between organisms 4 0.6 EIF4G1, SCARB1, MFGE8, ZYX 3.58 1.00

Discussion

We describe the dataset from the transcriptome analysis comparing wild type and β-catenin deficient BxPC-3 cells. In this analysis 85 transcripts were identified to be the most differentially regulated between the two groups. GO term enrichment analysis of the transcripts identified “cell adhesion” as the GO term that was most significantly enriched for. These results together with the rest the data from the previous published article [1] points towards a central role of β-catenin in enabling cell-cell contacts in BxPC3 cells.

References

  • 1.Olsen P.A., Solberg N.T., Lund K., Vehus T., Gelazauskaite M., Wilson S.R., Krauss S. Implications of targeted genomic disruption of beta-catenin in BxPC-3 pancreatic adenocarcinoma cells. PLoS One. 2014;9:e115496. doi: 10.1371/journal.pone.0115496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Dysvik B., Jonassen I. J-Express: exploring gene expression data using Java. Bioinformatics. 2001;17:369–370. doi: 10.1093/bioinformatics/17.4.369. [DOI] [PubMed] [Google Scholar]
  • 3.Tusher V.G., Tibshirani R., Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl. Acad. Sci. U. S. A. 2001;98:5116–5121. doi: 10.1073/pnas.091062498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Huang D.W., Sherman B.T., Lempicki R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009;4:44–57. doi: 10.1038/nprot.2008.211. [DOI] [PubMed] [Google Scholar]

Articles from Genomics Data are provided here courtesy of Elsevier

RESOURCES