Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Aug 29;71(Pt 9):m175–m176. doi: 10.1107/S2056989015015790

Crystal structure of di-μ-chlorido-bis(chlorido­{N 1-phenyl-N 4-[(pyridin-2-yl-κN)methyl­idene]benzene-1,4-di­amine-κN 4}mercury(II))

Md Serajul Haque Faizi a, Elena V Prisyazhnaya b,*
PMCID: PMC4555402  PMID: 26396873

Abstract

The whole mol­ecule of the title complex, [Hg2Cl4(C18H15N3)2], is generated by inversion symmetry. It was synthesized from the pyridine-derived Schiff base N-phenyl-N′-[(pyridin-2-yl)methyl­idene]benzene-1,4-di­amine (PPMBD). The five-coordinated Hg2+ ions have a distorted square-pyramidal environment defined by two N atoms, viz. the imine and the other pyridyl [Hg—N = 2.467 (6) and 2.310 (6) Å, respectively] belonging to the bidentate imino­pyridine ligand, and three Cl atoms [Hg—Cl = 2.407 (2), 2.447 (2) and 3.031 (2) Å]. The longest Hg—Cl bond is bridging about the inversion centre. In the ligand, the central ring and pyridine ring are oriented at a dihedral angle of 8.1 (4)°, while the planes of the pyridine ring and the terminal phenyl ring are oriented at a dihedral angle of 53.8 (4)°. In the crystal, mol­ecules are linked by N—H⋯Cl and C—H⋯Cl hydrogen bonds, forming sheets parallel to (001).

Keywords: crystal structure, mercury(II), Schiff base, bidentate ligand, inversion symmetry, hydrogen bonding

Related literature  

For applications of pyridincarbaldehyde and related structures, see: Baul et al. (2004); Das et al. (2013); Faizi & Sen (2014); Hughes & Prince (1978); Jursic et al. (2002); Kasselouri et al. (1993); Mandal et al. (2012); Motswainyana et al. (2013); Song et al. (2011).graphic file with name e-71-0m175-scheme1.jpg

Experimental  

Crystal data  

  • [Hg2Cl4(C18H15N3)2]

  • M r = 1089.64

  • Monoclinic, Inline graphic

  • a = 11.7507 (14) Å

  • b = 8.9026 (11) Å

  • c = 17.050 (2) Å

  • β = 90.194 (8)°

  • V = 1783.6 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 8.93 mm−1

  • T = 100 K

  • 0.18 × 0.15 × 0.12 mm

Data collection  

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004) T min = 0.296, T max = 0.414

  • 19428 measured reflections

  • 4451 independent reflections

  • 2451 reflections with I > 2σ(I)

  • R int = 0.098

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.124

  • S = 0.96

  • 4451 reflections

  • 220 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 1.78 e Å−3

  • Δρmin = −1.13 e Å−3

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015015790/su5192sup1.cif

e-71-0m175-sup1.cif (602.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015015790/su5192Isup2.hkl

e-71-0m175-Isup2.hkl (354.6KB, hkl)

x y z . DOI: 10.1107/S2056989015015790/su5192fig1.tif

The mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The unlabelled atoms are related to the labelled atoms by inversion symmetry (symmetry code: −x + 1, −y + 1, −z + 1).

c . DOI: 10.1107/S2056989015015790/su5192fig2.tif

The crystal packing of the title compound viewed along the c axis. The hydrogen bonds are shown as dashed lines (see Table 1 for details), and for clarity only the H atoms involved in hydrogen bonding are shown.

CCDC reference: 1420119

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
N3H3NCl2i 0.87(2) 2.67(3) 3.510(7) 161(7)
C1H1Cl1ii 0.95 2.74 3.493(9) 136
C6H6Cl1iii 0.95 2.82 3.526(9) 132

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors are grateful to the Department of Chemistry, College of Science, Sultan Qaboos University, Sultanate of Oman, for financial support.

supplementary crystallographic information

S1. Comment

Mercury is one of the most prevalent toxic metals in the environment and gains access to the body orally or dermally, causing cell dysfunction that consequently leads to health problems (Mandal et al., 2012). Schiff base complexes of 2-pyridine­carboxaldehyde and its derivatives have been found to be good herbicides and used for the protection of plants (Hughes & Prince, 1978). Transition metal complexes of pyridyl Schiff bases have found applications in catalysis (Kasselouri et al., 1993), Pyridyl derivatives of Schiff bases are important building blocks of many important compounds widely used in biological applications such as anti­oxidative,anti­cancer, fluorescent probe agents in industry, in coordination chemistry and in catalysis (Motswainyana et al., 2013; Das et al. , 2013; Song et al. 2011; Jursic et al., 2002). The synthesis of a complex of mercury(II) using the 2-pyridincarbaldehyde derivative of the Schiff base N-phenyl-N'-pyridin-2-yl­methyl­ene benzene-1,4-di­amine (PPMBD) has not previously been reported. We report herein the crystal structure of a new mercury(II) complex of this ligand.

The whole molecule of the title complex, Fig. 1, is generated by inversion symmetry. The Schiff base derived PPMBD ligand coordinates to the HgII atom as a bidentate ligand through the N atoms of the imine group and pyridine ring. Also two bridging and one terminal chloride anions are present in the coordination environment of the HgII atom (Baul et al., 2004). The five-coordinated Hg2+ ions have a distorted square-pyramidal geometry defined by two N atoms viz. one imine, the other pyridyl [Hg–N = 2.467 (6) and 2.310 (6) Å, respectively], belonging to the bidentate imino­pyridine ligand and three Cl atoms [Hg—Cl = 2.407 (2), 2.447 (2) and 3.031 (2) Å]. The longest Hg—Cl distance, Hg1···Cl1i = 3.031 (2) Å, is bridging about the centre of inversion (symmetry code: (i) -x+1, -y+1, -z+1). The observed Hg—Cl and Hg—N bond lengths and bond angles are considered normal for this type of HgII complex (Faizi & Sen, 2014). The central ring and pyridine ring are oriented at a dihedral angle of 8.10 (6)°. The pyridine ring and terminal phenyl ring are oriented at a dihedral angle of 53.78 (6)°.

In the crystal, molecules are linked by N—H···Cl and C—H···Cl hydrogen bonds forming sheets parallel to (001); see Fig. 2 and Table 1.

S2. Synthesis and crystallization

The imino­pyridyl compound N-phenyl-N'-pyridin-2-yl­methyl­ene benzene-1,4-di­amine (PPMBD) was prepared by adding drop wise pyridine-2-carbaldehyde (0.29 g, 2.71 mmol) to a methano­lic solution (50 ml) of N-phenyl-p-phenyl­enedi­amine (0.50 g, 2.71 mmol). The reaction mixture was stirred for 3 h at room temperature and filtered. The resulting yellow solid powder was washed with methanol (2 × 3 ml) and hexane (3 × 10 ml), respectively. The compound was recrystallized from in hot MeOH to give yellow crystals, which were dried in a vacuum desiccator to give the pure product (yield: 0.60 g, 80%; m.p.: 410-142 K). UV/vis (MeOH): λmax, nm (ε, M-1 cm-1): 205 (40,000), 280 (18,000), 398 (18,000). IR (KBr, cm-1): ν(N—H) 3259, ν(HC=N) 1618. 1H NMR (400 MHz DMSO-d6) δ (ppm) 8.67 (1H, d, J = 4.8 Hz), 8.41 (1H, s, HC=N), 8.12 (1H, d, J = 4.4 Hz), 7.90 (1H, t, J = 8.0 Hz), 7.46 (1H, t, J = 7.6 Hz ) 7.35 (2H, d, J = 3.6 Hz), 7.25 (2H, t, J = 3.6 Hz), 7.2 (2H, m, J = 7.2), 7.12 (2H, m), 6.86 (1H, t). HRMS (ESI) m/z [M+H]+ calcd for C18H15N3: 274.1339 found: 274.1349.

The title compound was prepared by reacting (PPMBD) (0.100 g, 0.37 mmol) with mercury(II) chloride (0.099 g, 0.37 mmol) in methanol (5 ml), with vigorous stirring for 2 h at room temperature The yellow precipitate that formed was filtered off and redissolved in di­methyl­formamide. Crystals of the title complex suitable for X-ray analysis was obtained within 3 days by slow evaporation of the di­methyl­formamide. The yellow crystals of the title compound were isolated (yield: 0.31 g, 77.1%; m.p.: 520 K).

S3. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The NH H-atom was located in difference Fourier map and refined with a distance restraint: N—H = 0.88 (2) Å with Uiso(H) = 1.2Ueq(N). The C-bound H-atoms were positioned geometrically and refined using a riding model: C—H = 0.95 Å with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The unlabelled atoms are related to the labelled atoms by inversion symmetry (symmetry code: -x+1, -y+1, -z+1).

Fig. 2.

Fig. 2.

The crystal packing of the title compound viewed along the c axis. The hydrogen bonds are shown as dashed lines (see Table 1 for details), and for clarity only the H atoms involved in hydrogen bonding are shown.

Crystal data

[Hg2Cl4(C18H15N3)2] Z = 2
Mr = 1089.64 F(000) = 1032
Monoclinic, P21/c Dx = 2.029 Mg m3
a = 11.7507 (14) Å Mo Kα radiation, λ = 0.71073 Å
b = 8.9026 (11) Å µ = 8.93 mm1
c = 17.050 (2) Å T = 100 K
β = 90.194 (8)° Needle, yellow
V = 1783.6 (4) Å3 0.18 × 0.15 × 0.12 mm

Data collection

Bruker SMART APEX CCD diffractometer 4451 independent reflections
Radiation source: fine-focus sealed tube 2451 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.098
/w–scans θmax = 28.5°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) h = −15→15
Tmin = 0.296, Tmax = 0.414 k = −11→11
19428 measured reflections l = −22→22

Refinement

Refinement on F2 1 restraint
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.048 H-atom parameters constrained
wR(F2) = 0.124 w = 1/[σ2(Fo2) + (0.0446P)2] where P = (Fo2 + 2Fc2)/3
S = 0.96 (Δ/σ)max = 0.001
4451 reflections Δρmax = 1.78 e Å3
220 parameters Δρmin = −1.13 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Hg1 0.60187 (3) 0.67045 (4) 0.53562 (2) 0.06131 (16)
Cl1 0.50851 (17) 0.6189 (2) 0.40995 (11) 0.0574 (5)
Cl2 0.78086 (16) 0.5540 (2) 0.56798 (12) 0.0631 (5)
N1 0.4820 (5) 0.7921 (7) 0.6219 (4) 0.0525 (16)
N2 0.6534 (5) 0.9389 (7) 0.5409 (3) 0.0474 (15)
N3 1.0303 (6) 1.1588 (8) 0.3773 (4) 0.0633 (19)
H3N 1.072 (6) 1.223 (8) 0.403 (4) 0.076*
C1 0.3949 (7) 0.7282 (10) 0.6584 (5) 0.068 (2)
H1 0.3772 0.6263 0.6471 0.082*
C2 0.3290 (7) 0.8051 (10) 0.7125 (5) 0.066 (2)
H2 0.2672 0.7562 0.7375 0.079*
C3 0.3529 (7) 0.9481 (11) 0.7291 (5) 0.065 (2)
H3 0.3106 1.0011 0.7677 0.078*
C4 0.4402 (7) 1.0173 (11) 0.6891 (4) 0.064 (2)
H4 0.4569 1.1203 0.6983 0.076*
C5 0.5036 (6) 0.9358 (9) 0.6355 (4) 0.0473 (18)
C6 0.5981 (6) 1.0109 (10) 0.5924 (4) 0.057 (2)
H6 0.6168 1.1125 0.6035 0.069*
C7 0.7473 (6) 0.9994 (10) 0.4998 (4) 0.0543 (19)
C8 0.7938 (7) 1.1435 (9) 0.5152 (5) 0.060 (2)
H8 0.7601 1.2064 0.5537 0.073*
C9 0.8865 (7) 1.1914 (10) 0.4749 (4) 0.063 (2)
H9 0.9190 1.2863 0.4870 0.076*
C10 0.9349 (6) 1.1035 (10) 0.4159 (4) 0.054 (2)
C11 0.8901 (7) 0.9631 (10) 0.3999 (4) 0.057 (2)
H11 0.9231 0.9016 0.3605 0.069*
C12 0.7970 (7) 0.9128 (9) 0.4417 (4) 0.055 (2)
H12 0.7663 0.8164 0.4302 0.066*
C13 1.0727 (7) 1.1208 (9) 0.3032 (4) 0.055 (2)
C14 1.1864 (7) 1.1437 (9) 0.2874 (5) 0.056 (2)
H14 1.2346 1.1839 0.3270 0.067*
C15 1.2311 (7) 1.1094 (10) 0.2154 (5) 0.064 (2)
H15 1.3101 1.1235 0.2064 0.077*
C16 1.1642 (8) 1.0554 (10) 0.1565 (5) 0.064 (2)
H16 1.1957 1.0316 0.1068 0.077*
C17 1.0504 (8) 1.0362 (11) 0.1704 (5) 0.073 (3)
H17 1.0030 0.9989 0.1296 0.088*
C18 1.0023 (7) 1.0698 (10) 0.2428 (4) 0.067 (3)
H18 0.9228 1.0583 0.2510 0.080*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Hg1 0.0548 (2) 0.0531 (2) 0.0761 (3) −0.00007 (16) 0.00288 (16) −0.01027 (17)
Cl1 0.0604 (13) 0.0501 (12) 0.0617 (11) −0.0058 (10) 0.0020 (9) 0.0005 (10)
Cl2 0.0529 (12) 0.0545 (13) 0.0818 (13) 0.0041 (10) −0.0016 (10) −0.0070 (11)
N1 0.049 (4) 0.046 (4) 0.062 (4) 0.002 (3) 0.008 (3) 0.000 (3)
N2 0.053 (4) 0.038 (4) 0.051 (3) −0.001 (3) −0.005 (3) 0.000 (3)
N3 0.063 (5) 0.069 (5) 0.058 (4) −0.017 (4) 0.012 (3) −0.017 (4)
C1 0.059 (6) 0.047 (5) 0.098 (6) −0.002 (4) 0.012 (5) −0.002 (5)
C2 0.059 (6) 0.062 (7) 0.076 (6) 0.002 (4) 0.021 (4) −0.003 (5)
C3 0.064 (6) 0.064 (6) 0.068 (5) 0.010 (5) 0.024 (4) −0.006 (5)
C4 0.064 (6) 0.059 (6) 0.068 (5) 0.000 (4) 0.004 (4) −0.016 (5)
C5 0.043 (4) 0.046 (5) 0.054 (4) 0.004 (3) 0.006 (3) −0.007 (4)
C6 0.064 (5) 0.045 (5) 0.062 (5) −0.004 (4) 0.006 (4) −0.011 (4)
C7 0.058 (5) 0.047 (5) 0.057 (4) 0.000 (4) 0.001 (4) 0.008 (4)
C8 0.070 (6) 0.050 (6) 0.062 (5) −0.010 (4) 0.015 (4) −0.013 (4)
C9 0.060 (6) 0.063 (7) 0.067 (5) −0.015 (4) 0.012 (4) −0.008 (4)
C10 0.044 (5) 0.065 (6) 0.052 (4) −0.006 (4) 0.010 (4) −0.008 (4)
C11 0.059 (5) 0.050 (5) 0.062 (5) 0.001 (4) 0.008 (4) −0.012 (4)
C12 0.064 (5) 0.040 (5) 0.061 (5) −0.004 (4) 0.006 (4) −0.011 (4)
C13 0.057 (5) 0.046 (5) 0.060 (5) −0.001 (4) 0.001 (4) 0.000 (4)
C14 0.046 (5) 0.055 (5) 0.066 (5) −0.006 (4) 0.001 (4) 0.003 (4)
C15 0.061 (6) 0.059 (6) 0.073 (6) 0.008 (4) 0.014 (5) −0.001 (5)
C16 0.080 (6) 0.054 (6) 0.058 (5) −0.005 (5) 0.011 (4) −0.002 (4)
C17 0.075 (6) 0.074 (7) 0.070 (5) −0.017 (5) −0.007 (5) −0.006 (5)
C18 0.053 (5) 0.087 (8) 0.062 (5) −0.011 (5) −0.001 (4) −0.009 (5)

Geometric parameters (Å, º)

Hg1—N1 2.310 (6) C7—C12 1.388 (10)
Hg1—Cl2 2.407 (2) C7—C8 1.418 (11)
Hg1—Cl1 2.4474 (19) C8—C9 1.360 (10)
Hg1—N2 2.467 (6) C8—H8 0.9500
N1—C5 1.325 (9) C9—C10 1.396 (10)
N1—C1 1.327 (10) C9—H9 0.9500
N2—C6 1.269 (9) C10—C11 1.383 (11)
N2—C7 1.414 (9) C11—C12 1.381 (10)
N3—C10 1.392 (10) C11—H11 0.9500
N3—C13 1.401 (9) C12—H12 0.9500
N3—H3N 0.87 (2) C13—C14 1.379 (10)
C1—C2 1.387 (11) C13—C18 1.394 (10)
C1—H1 0.9500 C14—C15 1.371 (10)
C2—C3 1.334 (11) C14—H14 0.9500
C2—H2 0.9500 C15—C16 1.360 (11)
C3—C4 1.380 (11) C15—H15 0.9500
C3—H3 0.9500 C16—C17 1.370 (11)
C4—C5 1.386 (10) C16—H16 0.9500
C4—H4 0.9500 C17—C18 1.392 (10)
C5—C6 1.491 (10) C17—H17 0.9500
C6—H6 0.9500 C18—H18 0.9500
N1—Hg1—Cl2 126.16 (16) N2—C7—C8 123.6 (7)
N1—Hg1—Cl1 111.91 (16) C9—C8—C7 120.0 (8)
Cl2—Hg1—Cl1 120.57 (7) C9—C8—H8 120.0
N1—Hg1—N2 70.9 (2) C7—C8—H8 120.0
Cl2—Hg1—N2 101.23 (15) C8—C9—C10 121.2 (8)
Cl1—Hg1—N2 108.84 (13) C8—C9—H9 119.4
C5—N1—C1 118.7 (7) C10—C9—H9 119.4
C5—N1—Hg1 116.5 (5) C11—C10—N3 122.2 (7)
C1—N1—Hg1 124.8 (6) C11—C10—C9 119.5 (8)
C6—N2—C7 123.5 (7) N3—C10—C9 118.2 (8)
C6—N2—Hg1 112.8 (5) C12—C11—C10 119.5 (7)
C7—N2—Hg1 122.9 (5) C12—C11—H11 120.2
C10—N3—C13 129.0 (7) C10—C11—H11 120.2
C10—N3—H3N 117 (5) C11—C12—C7 121.6 (7)
C13—N3—H3N 114 (6) C11—C12—H12 119.2
N1—C1—C2 122.2 (8) C7—C12—H12 119.2
N1—C1—H1 118.9 C14—C13—C18 118.4 (7)
C2—C1—H1 118.9 C14—C13—N3 119.2 (7)
C3—C2—C1 119.7 (8) C18—C13—N3 122.2 (7)
C3—C2—H2 120.1 C15—C14—C13 121.1 (7)
C1—C2—H2 120.1 C15—C14—H14 119.4
C2—C3—C4 118.5 (8) C13—C14—H14 119.4
C2—C3—H3 120.8 C16—C15—C14 121.1 (8)
C4—C3—H3 120.8 C16—C15—H15 119.4
C3—C4—C5 119.7 (8) C14—C15—H15 119.4
C3—C4—H4 120.2 C15—C16—C17 118.6 (8)
C5—C4—H4 120.2 C15—C16—H16 120.7
N1—C5—C4 121.1 (7) C17—C16—H16 120.7
N1—C5—C6 119.3 (7) C16—C17—C18 121.8 (8)
C4—C5—C6 119.5 (7) C16—C17—H17 119.1
N2—C6—C5 119.9 (7) C18—C17—H17 119.1
N2—C6—H6 120.0 C17—C18—C13 118.9 (8)
C5—C6—H6 120.0 C17—C18—H18 120.6
C12—C7—N2 118.2 (7) C13—C18—H18 120.6
C12—C7—C8 118.2 (7)
C5—N1—C1—C2 −2.7 (12) C7—C8—C9—C10 2.6 (13)
Hg1—N1—C1—C2 176.9 (6) C13—N3—C10—C11 25.0 (14)
N1—C1—C2—C3 −0.1 (13) C13—N3—C10—C9 −157.8 (8)
C1—C2—C3—C4 2.7 (13) C8—C9—C10—C11 −2.2 (13)
C2—C3—C4—C5 −2.6 (12) C8—C9—C10—N3 −179.5 (8)
C1—N1—C5—C4 2.7 (11) N3—C10—C11—C12 178.2 (7)
Hg1—N1—C5—C4 −176.9 (5) C9—C10—C11—C12 1.1 (12)
C1—N1—C5—C6 −177.4 (7) C10—C11—C12—C7 −0.4 (12)
Hg1—N1—C5—C6 2.9 (8) N2—C7—C12—C11 −178.9 (7)
C3—C4—C5—N1 −0.1 (11) C8—C7—C12—C11 0.7 (11)
C3—C4—C5—C6 −180.0 (7) C10—N3—C13—C14 −156.2 (9)
C7—N2—C6—C5 −177.1 (6) C10—N3—C13—C18 28.2 (14)
Hg1—N2—C6—C5 −6.9 (8) C18—C13—C14—C15 −3.6 (12)
N1—C5—C6—N2 3.1 (11) N3—C13—C14—C15 −179.4 (8)
C4—C5—C6—N2 −177.1 (7) C13—C14—C15—C16 1.8 (13)
C6—N2—C7—C12 −176.5 (7) C14—C15—C16—C17 0.2 (13)
Hg1—N2—C7—C12 14.2 (9) C15—C16—C17—C18 −0.2 (14)
C6—N2—C7—C8 4.0 (11) C16—C17—C18—C13 −1.7 (14)
Hg1—N2—C7—C8 −165.3 (6) C14—C13—C18—C17 3.5 (13)
C12—C7—C8—C9 −1.8 (12) N3—C13—C18—C17 179.1 (8)
N2—C7—C8—C9 177.8 (7)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N3—H3N···Cl2i 0.87 (2) 2.67 (3) 3.510 (7) 161 (7)
C1—H1···Cl1ii 0.95 2.74 3.493 (9) 136
C6—H6···Cl1iii 0.95 2.82 3.526 (9) 132

Symmetry codes: (i) −x+2, −y+2, −z+1; (ii) −x+1, −y+1, −z+1; (iii) −x+1, −y+2, −z+1.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: SU5192).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  2. Baul, T. S. B., Lycka, A., Butcher, R. & Smith, E. F. (2004). Polyhedron, 23, 2323–2329.
  3. Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Das, P., Mandal, A. K., Reddy, G. U., Baidya, M., Ghosh, S. K. & Das, A. (2013). Org. Biomol. Chem. 11, 6604–6614. [DOI] [PubMed]
  5. Faizi, M. S. H. & Sen, P. (2014). Acta Cryst. E70, m173. [DOI] [PMC free article] [PubMed]
  6. Hughes, M. & Prince, R. H. (1978). J. Inorg. Nucl. Chem. 40, 719–723.
  7. Jursic, B. S., Douelle, F., Bowdy, K. & Stevens, E. D. (2002). Tetrahedron Lett. 43, 5361–5365.
  8. Kasselouri, S., Garoufis, G., Kalkanis, A., Perlepes, S. P. & Hadjiliadis, N. (1993). Transition Met. Chem. 18, 531–536.
  9. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  10. Mandal, A. K., Suresh, M., Das, P., Suresh, E., Baidya, M., Ghosh, S. K. & Das, A. (2012). Org. Lett. 14, 2980–2983. [DOI] [PubMed]
  11. Motswainyana, W. M., Onani, M. O., Madiehe, A. M., Saibu, M., Jacobs, J. & van Meervelt, L. (2013). Inorg. Chim. Acta, 400, 197–202.
  12. Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.
  13. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  14. Song, S., Zhao, W., Wang, L., Redshaw, C., Wang, F. & Sun, W.-H. (2011). J. Organomet. Chem. 696, 3029–3035.
  15. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015015790/su5192sup1.cif

e-71-0m175-sup1.cif (602.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015015790/su5192Isup2.hkl

e-71-0m175-Isup2.hkl (354.6KB, hkl)

x y z . DOI: 10.1107/S2056989015015790/su5192fig1.tif

The mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The unlabelled atoms are related to the labelled atoms by inversion symmetry (symmetry code: −x + 1, −y + 1, −z + 1).

c . DOI: 10.1107/S2056989015015790/su5192fig2.tif

The crystal packing of the title compound viewed along the c axis. The hydrogen bonds are shown as dashed lines (see Table 1 for details), and for clarity only the H atoms involved in hydrogen bonding are shown.

CCDC reference: 1420119

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES