Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jul 31;71(Pt 8):o625–o626. doi: 10.1107/S205698901501395X

Crystal structure of natural phaeosphaeride A

Victoria V Abzianidze a,*, Ekaterina V Poluektova b, Ksenia P Bolshakova b, Taras L Panikorovskii c, Alexander S Bogachenkov d, Alexander O Berestetskiy b,*
PMCID: PMC4571431  PMID: 26396831

Abstract

The asymmetric unit of the title compound, C15H23NO5, contains two independent mol­ecules. Phaeosphaeride A contains two primary sections, an alkyl chain consisting of five C atoms and a cyclic system consisting of fused five- and six-membered rings with attached substituents. In the crystal, the mol­ecules form layered structures. Nearly planar sheets, parallel to the (001) plane, form bilayers of two-dimensional hydrogen-bonded networks with the hy­droxy groups located on the inter­ior of the bilayer sheets. The network is constructed primarily of four O—H⋯O hydrogen bonds, which form a zigzag pattern in the (001) plane. The butyl chains inter­digitate with the butyl chains on adjacent sheets. The crystal was twinned by a twofold rotation about the c axis, with refined major–minor occupancy fractions of 0.718 (6):0.282 (6).

Keywords: crystal structure, natural phaeosphaeride A

Related literature  

For details of the extraction of natural phaeosphaeride A and a discussion of its biological activities, see: Maloney et al. (2006). For details of trials of the synthesis of natural phaeosphaeride A, see: Kobayashi et al. (2011); Chatzimpaloglou et al. (2012, 2014); Kobayashi et al. (2015). Ring-puckering parameters are as defined by Cremer & Pople (1975). Hydrogen bonding is described in detail by Desiraju & Steiner (1999) and by Arunan et al. (2011). The twin law was identified using TwinRotMat in PLATON (Spek, 2009). Criteria for absolute configuration determination are described by Flack (1983) and Parsons et al. (2013).graphic file with name e-71-0o625-scheme1.jpg

Experimental  

Crystal data  

  • C15H23NO5

  • M r = 297.34

  • Monoclinic, Inline graphic

  • a = 10.14078 (18) Å

  • b = 9.10361 (14) Å

  • c = 17.5991 (3) Å

  • β = 100.1847 (16)°

  • V = 1599.11 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.77 mm−1

  • T = 100 K

  • 0.35 × 0.35 × 0.05 mm

Data collection  

  • Agilent SuperNova Dual Source diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) T min = 0.824, T max = 1.000

  • 6054 measured reflections

  • 6054 independent reflections

  • 5940 reflections with I > 2σ(I)

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.058

  • wR(F 2) = 0.150

  • S = 1.10

  • 6054 reflections

  • 389 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.30 e Å−3

  • Absolute structure: Flack x determined using 2632 quotients [(I +) − (I )]/[(I +) + (I )] (Parsons et al., 2013)

  • Absolute structure parameter: 0.05 (8)

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S205698901501395X/pk2560sup1.cif

e-71-0o625-sup1.cif (259.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901501395X/pk2560Isup2.hkl

e-71-0o625-Isup2.hkl (481.2KB, hkl)

Supporting information file. DOI: 10.1107/S205698901501395X/pk2560Isup3.cml

et al. . DOI: 10.1107/S205698901501395X/pk2560fig1.tif

A view of mol­ecules I (left) and II (right) of phaeosphaeride A. The atom numbering scheme is that of Maloney et al. (2006). Displacement ellipsoids are shown at the 50% probability level.

. DOI: 10.1107/S205698901501395X/pk2560fig2.tif

Projection of the layered crystal structure of phaeosphaeride A on the (100) plane. The dashed lines indicate the short contacts between mol­ecules of phaeosphaeride A (only hydrogen atoms forming hydrogen bonds are shown).

CCDC reference: 1412515

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
O2H2O2A 0.82 2.04 2.818(5) 158
O3H3O4i 0.82 2.03 2.836(5) 168
O2AH2AO4i 0.82 2.00 2.685(5) 141
O3AH3AO4A ii 0.82 2.10 2.829(5) 149

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

XRD study was completed at the X-ray Diffraction Centre of St Petersburg State University. The research was financially supported by Russian Scientific Fund (project No. 14-26-00067).

supplementary crystallographic information

S1. Comment

In 2006, Clardy and colleagues isolated phaeosphaeride A from an endophytic fungus FA39 (Maloney et al., 2006). Phaeosphaeride A turned out to be an inhibitor of signal transduction and an activator of transcription 3 (STAT3)-dependent signaling. It was reported to selectively inhibit STAT3/DNA binding with an IC50 of 0.61 mM and to exhibit promising cell growth inhibition in STAT3-dependent U266 multiple myeloma cells with an IC50 of 6.7 µM.

While the relative stereochemistry of phaeosphaeride A was deduced on the basis of NOE experiments, its absolute configuration remained undetermined (Maloney et al., 2006). Moreover, the attempts of total synthesis of phaeosphaeride A showed considerable differences in 1H and 13C NMR data between the synthetic and natural phaeosphaeride A (Kobayashi et al., 2011; Chatzimpaloglou et al., 2012, 2014). In 2015, Kobayashi and colleagues established the relative and absolute configurations of natural phaeosphaeride A by completing the first total synthesis of ent-phaeosphaeride A (Kobayashi et al., 2015).

Our research group isolated phaeosphaeride A from a fungal strain belonging to the genus Phoma. Phaeosphaeride A was obtained as an optically active (-108.33 (c 0.06, CH2Cl2)) yellow glass. 1H and 13C NMR data as well as mass spectra of our phaeosphaeride A match with the data reported for Clardy's natural phaeosphaeride A (Maloney et al., 2006). Optical rotation of Clardy's product (-93.6 (c 2.0, CH2Cl2)) and our phaeosphaeride A have the same sign. In this work we describe the crystal structure of natural phaeosphaeride A.

S2. Experimental

NMR spectra were recorded on a Bruker AVANCE III 400 MHz spectrometer in DMSO-d6. The same solvent was used as an inter­nal standard. High-resolution mass spectra (HRMS) were recorded on a LTQ Orbitrap Velos spectrometer. Optical rotations were determined on an Optical Activity AA-55 polarimeter using a 20 cm cell with a Na 589 nm filter.

Phaeosphaeride A was isolated from solid culture of the fungus Phoma sp. N 19. The microorganism was obtained from leaves of Cirsium arvense (L.) Scop. and deposited in the culture collection of the All-Russian Institute of Plant Protection (Saint-Petersburg, Russian Federation). The metabolite was purified from the fungal extract with a combination of preparative column chromatography and TLC on silica gel to give phaeosphaeride A as a yellow precipitate. (-108.33 (c 0.06, CH2Cl2); 1H NMR (400 MHz, DMSO-d6) δ 5.44 (d, J = 5.8 Hz, 1H), 4.97 (s, 2H), 4.92 (s, 1H), 4.07 (d, J = 11.3 Hz, 1H), 3.86 (d, J = 5.8 Hz, 1H), 3.79 (s, 3H), 1.82 (m, 1H), 1.58-1.22 (m, 7H), 1.19 (s, 3H), 0.86 (t, J = 6.4 Hz, 3H); 13C NMR (100.6 MHz, DMSO-d6) δ 166.53, 155.30, 137.12, 104.80, 90.80, 86.25, 70.96, 64.36, 63.76, 30.90, 27.60, 26.11, 21.96, 20.40, 13.85; HRMS [M + H]+ calcd for C15H24NO5 298.16490, found 298.16493. Recrystallization from heptane yielded yellow crystals (-116.66; -108.33 (c 0.06, CH2Cl2).

S3. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1.

H atoms bonded to C atoms were included in calculated positions and refined using a riding model, with Uiso(H) set to 1.2Ueq(C) and C–H = 0.97 Å for CH2 groups, Uiso(H) set to 1.5Ueq(N) and C–H = 0.96 Å for CH3 groups and Uiso(H) set to 1.2Ueq(N) and C–H = 0.93 Å for CH groups. All H atoms bonded to O atoms were located in a difference Fourier map and were refined with distance restraints and constrained displacement parameters OH 0.82 Å and Uiso(H) set to 1.2Ueq(O). The large thermal ellipsoid on C13 is characteristic for the distal end of long alkyl chains.

The structure of phaeosphaeride A (Fig.1) was refined as rotational twin [by a two-fold rotation about (001)] with twin fractions of 0.718 (6) and 0.282 (6). The 'HKLF 5' format file for the final refinement was generated by the TwinRotMat facility in Platon (Spek, 2009). The ratio (Fc2-Fo2)/esd for the reflections with the highest error in final refinement model (as a rotational twin) has lower residuals than in the initial solution. We have used Bayesian Statistics for verifying absolute structure. Supplementary crystallographic data for this paper have been deposited at Cambridge Crystallographic Data Centre (CCDC 1412515) and can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif.

S4. Geometry

The asymmetric unit contains two independent molecules of phaeosphaeride A (I and II) (fig. 1). Each molecule of phaeosphaeride A (numbering of atoms of phaeosphaeride A is given according to Clardy (Maloney et al., 2006)) contains two primary sections; an alkyl chain consisting of C(13)—C(12)—C(11)—C(10)—C(9) atoms and a cyclic system consisting of five and six membered rings with adjacent atoms.

For the five-membered ring C(1)—N(2)—C(3)—C(4)—C(5) of molecule I the Cremer-Pople (Cremer & Pople, 1975) parameters are Q=0.0714 Å, φ=197.99°, revealing a slightly distorted half-chair (2T1) conformation. Cremer-Pople parameters of Q=0.501 Å, θ=128.71°, φ=88.01° for the six-membered heterocycle of molecule I are consistent with a half-chair conformation (5H4). The geometric parameters of the six-membered rings for both molecules are similar, but the five-membered rings have different conformations. The five-membered ring in molecule II exhibits an envelope (1E) conformation.

Torsion angles O(1)—C(4)—C(5)—C(1) and C(3)—C(4)—C(5)—C(6) are -178.2 (4)° and -177.1 (4)° respectively, corresponding to co-planar conformation between the five and six-membered rings. The geometry of the heterocyclic ring system of the molecule (base of the half chair and the five-membered ring) is close to planar.

The exocyclic alkyl chain of I and the back of the half-chair lie approximately in the same plane. The deviation between the plane of alkyl atoms C(8)—C(9)—C(10)—C(11)—C(12)—C(13) and the back of the chair is 9.7 (4)°.

The geometric parameters are similar for both molecules I and II forming the weak hydrogen-bonded dimer through O2—H2···O2A. But angles characterizing the meth­oxy groups N(2)—O(5)—C(16) are slightly different (109.9 (3)° for I and 110.4 (4)° for II). The difference between angles O(4)—C(1)—C(5) is much greater with values of 129.4 (4)° and 123.2 (4)° for I and II respectively.

The molecules form layered structures. Nearly planar sheets, parallel with the (001) plane, form primary layers of two-dimensional hydrogen-bonded networks with the hydroxyl moieties located on the inter­ior of the sheets. The network (Fig. 2) is dependent primarily on four hydrogen bonds (Table 1) O2—H2···O2A, O3—H3···O4, O2A—H2A···O4, O3A—H3A···O4A (Desiraju et al., 1999; Arunan et al., 2011). In the (001) plane, two-dimensional hydrogen-bonded networks form a zig-zag pattern. The aliphatic butyl chains inter­digitate with the butyl chains on the adjacent sheets.

Figures

Fig. 1.

Fig. 1.

A view of molecules I (left) and II (right) of phaeosphaeride A. The atom numbering scheme is that of Maloney et al. (2006). Displacement ellipsoids are shown at the 50% probability level.

Fig. 2.

Fig. 2.

Projection of the layered crystal structure of phaeosphaeride A on the (100) plane. The dashed lines indicate the short contacts between molecules of phaeosphaeride A (only hydrogen atoms forming hydrogen bonds are shown).

Crystal data

C15H23NO5 F(000) = 640
Mr = 297.34 Dx = 1.235 Mg m3
Monoclinic, P21 Cu Kα radiation, λ = 1.54184 Å
a = 10.14078 (18) Å Cell parameters from 14376 reflections
b = 9.10361 (14) Å θ = 4.4–75.9°
c = 17.5991 (3) Å µ = 0.77 mm1
β = 100.1847 (16)° T = 100 K
V = 1599.11 (5) Å3 Tabular, colourless
Z = 4 0.35 × 0.35 × 0.05 mm

Data collection

Agilent SuperNova Dual Source diffractometer with an Atlas detector 6054 measured reflections
Radiation source: SuperNova (Cu) X-ray Source 6054 independent reflections
Mirror monochromator 5940 reflections with I > 2σ(I)
Detector resolution: 10.3829 pixels mm-1 θmax = 70.0°, θmin = 4.4°
ω scans h = −12→12
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) k = −11→11
Tmin = 0.824, Tmax = 1.000 l = −4→21

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.058 w = 1/[σ2(Fo2) + (0.0289P)2 + 2.9758P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.150 (Δ/σ)max < 0.001
S = 1.10 Δρmax = 0.36 e Å3
6054 reflections Δρmin = −0.30 e Å3
389 parameters Absolute structure: Flack x determined using 2632 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraint Absolute structure parameter: 0.05 (8)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 1.1431 (5) 0.8972 (6) 0.9253 (3) 0.0153 (10)
N2 1.1842 (4) 0.7850 (5) 0.8817 (2) 0.0163 (9)
C3 1.1862 (5) 0.8314 (6) 0.8053 (3) 0.0149 (10)
C4 1.1266 (5) 0.9782 (6) 0.8025 (3) 0.0143 (10)
C5 1.0975 (5) 1.0166 (5) 0.8717 (3) 0.0135 (9)
C6 1.0311 (5) 1.1589 (6) 0.8845 (3) 0.0159 (10)
H6 1.0984 1.2269 0.9115 0.019*
C7 0.9703 (5) 1.2250 (6) 0.8039 (3) 0.0167 (10)
C8 1.0752 (5) 1.2122 (5) 0.7508 (3) 0.0144 (10)
H8 1.1580 1.2596 0.7765 0.017*
C9 1.0343 (5) 1.2809 (6) 0.6718 (3) 0.0194 (11)
H9A 1.0006 1.3791 0.6779 0.023*
H9B 0.9620 1.2237 0.6426 0.023*
C10 1.1482 (5) 1.2899 (7) 0.6264 (3) 0.0231 (11)
H10A 1.1855 1.1924 0.6231 0.028*
H10B 1.2183 1.3519 0.6543 0.028*
C11 1.1059 (7) 1.3504 (8) 0.5454 (4) 0.0349 (15)
H11A 1.0380 1.2864 0.5171 0.042*
H11B 1.0657 1.4463 0.5487 0.042*
C12 1.2195 (8) 1.3646 (9) 0.5007 (4) 0.0433 (19)
H12A 1.2627 1.2697 0.4998 0.052*
H12B 1.2852 1.4326 0.5278 0.052*
C13 1.1771 (12) 1.4175 (13) 0.4187 (5) 0.080 (4)
H13A 1.1119 1.3511 0.3913 0.120*
H13B 1.2538 1.4211 0.3936 0.120*
H13C 1.1387 1.5138 0.4189 0.120*
C14 1.2311 (5) 0.7567 (6) 0.7508 (3) 0.0213 (11)
H14A 1.2660 0.6629 0.7611 0.026*
H14B 1.2277 0.7979 0.7021 0.026*
C15 0.8381 (5) 1.1508 (6) 0.7705 (3) 0.0193 (10)
H15A 0.8540 1.0495 0.7600 0.029*
H15B 0.7986 1.1992 0.7235 0.029*
H15C 0.7782 1.1570 0.8070 0.029*
C16 1.2068 (6) 0.5407 (6) 0.9208 (3) 0.0203 (11)
H16A 1.1648 0.5103 0.8701 0.031*
H16B 1.1400 0.5521 0.9528 0.031*
H16C 1.2706 0.4678 0.9429 0.031*
O1 1.1050 (4) 1.0568 (4) 0.73717 (19) 0.0172 (7)
O2 0.9541 (4) 1.3789 (4) 0.8112 (2) 0.0183 (8)
H2 0.8942 1.3951 0.8359 0.027*
O3 0.9324 (4) 1.1327 (4) 0.9312 (2) 0.0213 (8)
H3 0.9060 1.2114 0.9456 0.032*
O4 1.1447 (4) 0.8881 (4) 0.99543 (19) 0.0183 (8)
O5 1.2747 (4) 0.6794 (4) 0.9159 (2) 0.0194 (8)
C1A 0.4815 (5) 1.9716 (6) 0.8996 (3) 0.0156 (10)
N2A 0.4361 (4) 2.0638 (5) 0.8379 (2) 0.0174 (9)
C3A 0.4890 (5) 2.0271 (6) 0.7717 (3) 0.0159 (10)
C4A 0.5564 (5) 1.8865 (6) 0.7938 (3) 0.0136 (9)
C5A 0.5529 (5) 1.8520 (5) 0.8678 (3) 0.0147 (10)
C6A 0.6116 (5) 1.7116 (5) 0.9032 (3) 0.0140 (10)
H6A 0.5393 1.6398 0.9020 0.017*
C7A 0.7097 (5) 1.6545 (5) 0.8525 (3) 0.0126 (9)
C8A 0.6355 (5) 1.6563 (5) 0.7676 (3) 0.0140 (10)
H8A 0.5498 1.6055 0.7656 0.017*
C9A 0.7086 (5) 1.5840 (6) 0.7096 (3) 0.0191 (11)
H9AA 0.7419 1.4891 0.7296 0.023*
H9AB 0.7853 1.6439 0.7038 0.023*
C10A 0.6212 (6) 1.5621 (7) 0.6302 (3) 0.0223 (11)
H10C 0.5384 1.5139 0.6364 0.027*
H10D 0.5986 1.6572 0.6066 0.027*
C11A 0.6921 (6) 1.4697 (7) 0.5771 (3) 0.0270 (13)
H11C 0.7732 1.5202 0.5699 0.032*
H11D 0.7183 1.3768 0.6023 0.032*
C12A 0.6074 (6) 1.4392 (8) 0.4983 (3) 0.0295 (14)
H12C 0.5805 1.5318 0.4730 0.035*
H12D 0.5269 1.3871 0.5051 0.035*
C13A 0.6823 (7) 1.3483 (8) 0.4466 (3) 0.0344 (15)
H13D 0.6244 1.3297 0.3982 0.052*
H13E 0.7096 1.2566 0.4715 0.052*
H13F 0.7599 1.4013 0.4377 0.052*
C14A 0.4806 (5) 2.1038 (6) 0.7075 (3) 0.0210 (11)
H14C 0.4356 2.1932 0.7026 0.025*
H14D 0.5198 2.0685 0.6671 0.025*
C15A 0.8399 (5) 1.7422 (6) 0.8646 (3) 0.0160 (10)
H15D 0.8201 1.8444 0.8550 0.024*
H15E 0.8958 1.7077 0.8296 0.024*
H15F 0.8858 1.7298 0.9168 0.024*
C16A 0.5035 (6) 2.3002 (6) 0.8752 (4) 0.0273 (12)
H16D 0.5616 2.2998 0.8376 0.041*
H16E 0.5520 2.2663 0.9238 0.041*
H16F 0.4719 2.3983 0.8809 0.041*
O1A 0.6069 (4) 1.8064 (4) 0.74144 (18) 0.0166 (7)
O2A 0.7369 (3) 1.5024 (4) 0.86892 (19) 0.0145 (7)
H2A 0.7410 1.4877 0.9152 0.022*
O3A 0.6775 (3) 1.7297 (4) 0.98091 (18) 0.0145 (7)
H3A 0.6363 1.6850 1.0097 0.022*
O4A 0.4586 (4) 1.9909 (4) 0.9650 (2) 0.0179 (7)
O5A 0.3911 (4) 2.2045 (4) 0.8499 (2) 0.0186 (8)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.015 (2) 0.013 (2) 0.017 (2) −0.004 (2) −0.0009 (19) −0.0023 (19)
N2 0.016 (2) 0.013 (2) 0.018 (2) 0.0036 (17) −0.0009 (16) 0.0025 (17)
C3 0.011 (2) 0.018 (2) 0.016 (2) −0.0028 (19) 0.0039 (18) 0.0019 (19)
C4 0.014 (2) 0.016 (2) 0.015 (2) −0.0008 (19) 0.0064 (18) −0.0002 (19)
C5 0.010 (2) 0.014 (2) 0.017 (2) −0.0018 (19) 0.0024 (17) −0.0027 (19)
C6 0.017 (2) 0.017 (2) 0.014 (2) 0.001 (2) 0.0063 (19) −0.0035 (19)
C7 0.017 (2) 0.012 (2) 0.022 (3) 0.001 (2) 0.006 (2) −0.0002 (19)
C8 0.013 (2) 0.012 (2) 0.017 (2) 0.0003 (18) −0.0002 (18) 0.0007 (19)
C9 0.018 (2) 0.021 (3) 0.018 (2) 0.005 (2) 0.0005 (19) 0.006 (2)
C10 0.022 (3) 0.027 (3) 0.020 (3) 0.009 (2) 0.003 (2) 0.008 (2)
C11 0.037 (4) 0.041 (4) 0.027 (3) 0.016 (3) 0.009 (3) 0.017 (3)
C12 0.055 (5) 0.047 (4) 0.035 (3) 0.015 (4) 0.027 (3) 0.021 (3)
C13 0.113 (9) 0.095 (8) 0.046 (5) 0.054 (7) 0.049 (5) 0.046 (5)
C14 0.021 (3) 0.022 (3) 0.022 (3) 0.005 (2) 0.009 (2) −0.002 (2)
C15 0.016 (2) 0.020 (3) 0.021 (2) 0.000 (2) 0.003 (2) 0.000 (2)
C16 0.024 (3) 0.012 (2) 0.026 (3) 0.000 (2) 0.007 (2) 0.000 (2)
O1 0.0200 (18) 0.0170 (18) 0.0144 (16) 0.0042 (15) 0.0022 (13) −0.0008 (14)
O2 0.0174 (18) 0.0135 (17) 0.0253 (19) 0.0032 (14) 0.0075 (15) 0.0004 (14)
O3 0.030 (2) 0.0158 (18) 0.0222 (18) 0.0035 (16) 0.0158 (16) −0.0017 (15)
O4 0.0252 (19) 0.0170 (17) 0.0123 (16) −0.0038 (15) 0.0022 (14) 0.0014 (14)
O5 0.0177 (18) 0.0127 (18) 0.0263 (19) 0.0023 (14) −0.0006 (15) 0.0034 (14)
C1A 0.013 (2) 0.013 (2) 0.021 (2) −0.0010 (19) 0.0022 (19) −0.0025 (19)
N2A 0.021 (2) 0.011 (2) 0.020 (2) 0.0053 (18) 0.0049 (17) −0.0022 (17)
C3A 0.010 (2) 0.016 (2) 0.023 (2) −0.0024 (19) 0.0038 (18) −0.005 (2)
C4A 0.010 (2) 0.014 (2) 0.017 (2) −0.0044 (19) 0.0032 (18) −0.0027 (19)
C5A 0.013 (2) 0.014 (2) 0.019 (2) −0.0059 (19) 0.0059 (19) −0.0034 (19)
C6A 0.016 (2) 0.014 (2) 0.012 (2) −0.0061 (19) 0.0038 (18) −0.0016 (18)
C7A 0.012 (2) 0.011 (2) 0.015 (2) 0.0008 (19) 0.0008 (18) 0.0019 (18)
C8A 0.014 (2) 0.014 (2) 0.013 (2) 0.0007 (19) −0.0007 (18) 0.0015 (18)
C9A 0.018 (3) 0.024 (3) 0.015 (2) 0.006 (2) 0.002 (2) 0.000 (2)
C10A 0.023 (3) 0.028 (3) 0.016 (2) 0.006 (2) 0.004 (2) −0.005 (2)
C11A 0.031 (3) 0.032 (3) 0.018 (3) 0.010 (3) 0.003 (2) −0.004 (2)
C12A 0.029 (3) 0.041 (4) 0.019 (3) 0.006 (3) 0.003 (2) −0.008 (2)
C13A 0.040 (4) 0.043 (4) 0.020 (3) 0.003 (3) 0.005 (3) −0.010 (3)
C14A 0.021 (3) 0.021 (3) 0.021 (3) 0.005 (2) 0.005 (2) 0.003 (2)
C15A 0.017 (2) 0.018 (2) 0.014 (2) −0.002 (2) 0.0056 (18) 0.0015 (19)
C16A 0.029 (3) 0.017 (3) 0.036 (3) −0.011 (2) 0.006 (2) −0.008 (2)
O1A 0.0188 (17) 0.0195 (18) 0.0120 (15) 0.0060 (15) 0.0039 (13) 0.0011 (14)
O2A 0.0181 (17) 0.0128 (17) 0.0122 (15) 0.0024 (14) 0.0016 (13) 0.0016 (13)
O3A 0.0175 (17) 0.0154 (17) 0.0104 (15) −0.0013 (14) 0.0022 (13) 0.0008 (13)
O4A 0.0234 (19) 0.0152 (18) 0.0175 (17) 0.0020 (15) 0.0105 (14) −0.0016 (14)
O5A 0.0157 (18) 0.0102 (17) 0.0301 (19) 0.0022 (14) 0.0044 (15) −0.0040 (15)

Geometric parameters (Å, º)

C1—N2 1.385 (7) C1A—N2A 1.386 (7)
C1—C5 1.460 (7) C1A—C5A 1.472 (7)
C1—O4 1.234 (6) C1A—O4A 1.226 (6)
N2—C3 1.412 (6) N2A—C3A 1.406 (7)
N2—O5 1.391 (5) N2A—O5A 1.389 (5)
C3—C4 1.463 (7) C3A—C4A 1.471 (7)
C3—C14 1.320 (7) C3A—C14A 1.318 (7)
C4—C5 1.349 (7) C4A—C5A 1.347 (7)
C4—O1 1.339 (6) C4A—O1A 1.345 (6)
C5—C6 1.495 (7) C5A—C6A 1.498 (7)
C6—H6 0.9800 C6A—H6A 0.9800
C6—C7 1.563 (7) C6A—C7A 1.540 (7)
C6—O3 1.423 (6) C6A—O3A 1.422 (6)
C7—C8 1.540 (7) C7A—C8A 1.549 (6)
C7—C15 1.523 (7) C7A—C15A 1.526 (7)
C7—O2 1.419 (6) C7A—O2A 1.431 (6)
C8—H8 0.9800 C8A—H8A 0.9800
C8—C9 1.514 (7) C8A—C9A 1.515 (7)
C8—O1 1.475 (6) C8A—O1A 1.455 (6)
C9—H9A 0.9700 C9A—H9AA 0.9700
C9—H9B 0.9700 C9A—H9AB 0.9700
C9—C10 1.518 (7) C9A—C10A 1.529 (7)
C10—H10A 0.9700 C10A—H10C 0.9700
C10—H10B 0.9700 C10A—H10D 0.9700
C10—C11 1.519 (7) C10A—C11A 1.528 (7)
C11—H11A 0.9700 C11A—H11C 0.9700
C11—H11B 0.9700 C11A—H11D 0.9700
C11—C12 1.510 (9) C11A—C12A 1.523 (8)
C12—H12A 0.9700 C12A—H12C 0.9700
C12—H12B 0.9700 C12A—H12D 0.9700
C12—C13 1.511 (10) C12A—C13A 1.527 (8)
C13—H13A 0.9600 C13A—H13D 0.9600
C13—H13B 0.9600 C13A—H13E 0.9600
C13—H13C 0.9600 C13A—H13F 0.9600
C14—H14A 0.9300 C14A—H14C 0.9300
C14—H14B 0.9300 C14A—H14D 0.9300
C15—H15A 0.9600 C15A—H15D 0.9600
C15—H15B 0.9600 C15A—H15E 0.9600
C15—H15C 0.9600 C15A—H15F 0.9600
C16—H16A 0.9600 C16A—H16D 0.9600
C16—H16B 0.9600 C16A—H16E 0.9600
C16—H16C 0.9600 C16A—H16F 0.9600
C16—O5 1.448 (6) C16A—O5A 1.442 (6)
O2—H2 0.8200 O2A—H2A 0.8200
O3—H3 0.8200 O3A—H3A 0.8200
N2—C1—C5 106.4 (4) N2A—C1A—C5A 105.5 (4)
O4—C1—N2 123.6 (5) O4A—C1A—N2A 123.9 (5)
O4—C1—C5 129.9 (5) O4A—C1A—C5A 130.6 (5)
C1—N2—C3 111.3 (4) C1A—N2A—C3A 112.5 (4)
C1—N2—O5 120.6 (4) C1A—N2A—O5A 120.8 (4)
O5—N2—C3 120.0 (4) O5A—N2A—C3A 122.0 (4)
N2—C3—C4 103.3 (4) N2A—C3A—C4A 102.4 (4)
C14—C3—N2 127.0 (5) C14A—C3A—N2A 127.4 (5)
C14—C3—C4 129.7 (5) C14A—C3A—C4A 130.1 (5)
C5—C4—C3 111.2 (4) C5A—C4A—C3A 111.6 (4)
O1—C4—C3 121.4 (4) O1A—C4A—C3A 120.4 (4)
O1—C4—C5 127.4 (5) O1A—C4A—C5A 127.9 (5)
C1—C5—C6 130.4 (4) C1A—C5A—C6A 131.2 (4)
C4—C5—C1 107.1 (4) C4A—C5A—C1A 107.1 (4)
C4—C5—C6 122.5 (5) C4A—C5A—C6A 121.6 (4)
C5—C6—H6 109.0 C5A—C6A—H6A 108.7
C5—C6—C7 108.3 (4) C5A—C6A—C7A 107.3 (4)
C7—C6—H6 109.0 C7A—C6A—H6A 108.7
O3—C6—C5 108.9 (4) O3A—C6A—C5A 112.7 (4)
O3—C6—H6 109.0 O3A—C6A—H6A 108.7
O3—C6—C7 112.6 (4) O3A—C6A—C7A 110.8 (4)
C8—C7—C6 108.5 (4) C6A—C7A—C8A 107.6 (4)
C15—C7—C6 111.0 (4) C15A—C7A—C6A 112.0 (4)
C15—C7—C8 112.8 (4) C15A—C7A—C8A 113.0 (4)
O2—C7—C6 109.4 (4) O2A—C7A—C6A 109.3 (4)
O2—C7—C8 103.5 (4) O2A—C7A—C8A 104.4 (4)
O2—C7—C15 111.4 (4) O2A—C7A—C15A 110.3 (4)
C7—C8—H8 108.3 C7A—C8A—H8A 107.8
C9—C8—C7 114.8 (4) C9A—C8A—C7A 115.7 (4)
C9—C8—H8 108.3 C9A—C8A—H8A 107.8
O1—C8—C7 110.8 (4) O1A—C8A—C7A 110.5 (4)
O1—C8—H8 108.3 O1A—C8A—H8A 107.8
O1—C8—C9 106.1 (4) O1A—C8A—C9A 106.8 (4)
C8—C9—H9A 108.9 C8A—C9A—H9AA 108.9
C8—C9—H9B 108.9 C8A—C9A—H9AB 108.9
C8—C9—C10 113.3 (4) C8A—C9A—C10A 113.5 (4)
H9A—C9—H9B 107.7 H9AA—C9A—H9AB 107.7
C10—C9—H9A 108.9 C10A—C9A—H9AA 108.9
C10—C9—H9B 108.9 C10A—C9A—H9AB 108.9
C9—C10—H10A 108.9 C9A—C10A—H10C 109.3
C9—C10—H10B 108.9 C9A—C10A—H10D 109.3
C9—C10—C11 113.5 (4) H10C—C10A—H10D 107.9
H10A—C10—H10B 107.7 C11A—C10A—C9A 111.7 (5)
C11—C10—H10A 108.9 C11A—C10A—H10C 109.3
C11—C10—H10B 108.9 C11A—C10A—H10D 109.3
C10—C11—H11A 108.8 C10A—C11A—H11C 108.7
C10—C11—H11B 108.8 C10A—C11A—H11D 108.7
H11A—C11—H11B 107.7 H11C—C11A—H11D 107.6
C12—C11—C10 113.9 (5) C12A—C11A—C10A 114.0 (5)
C12—C11—H11A 108.8 C12A—C11A—H11C 108.7
C12—C11—H11B 108.8 C12A—C11A—H11D 108.7
C11—C12—H12A 108.7 C11A—C12A—H12C 109.1
C11—C12—H12B 108.7 C11A—C12A—H12D 109.1
C11—C12—C13 114.2 (7) C11A—C12A—C13A 112.4 (5)
H12A—C12—H12B 107.6 H12C—C12A—H12D 107.8
C13—C12—H12A 108.7 C13A—C12A—H12C 109.1
C13—C12—H12B 108.7 C13A—C12A—H12D 109.1
C12—C13—H13A 109.5 C12A—C13A—H13D 109.5
C12—C13—H13B 109.5 C12A—C13A—H13E 109.5
C12—C13—H13C 109.5 C12A—C13A—H13F 109.5
H13A—C13—H13B 109.5 H13D—C13A—H13E 109.5
H13A—C13—H13C 109.5 H13D—C13A—H13F 109.5
H13B—C13—H13C 109.5 H13E—C13A—H13F 109.5
C3—C14—H14A 120.0 C3A—C14A—H14C 120.0
C3—C14—H14B 120.0 C3A—C14A—H14D 120.0
H14A—C14—H14B 120.0 H14C—C14A—H14D 120.0
C7—C15—H15A 109.5 C7A—C15A—H15D 109.5
C7—C15—H15B 109.5 C7A—C15A—H15E 109.5
C7—C15—H15C 109.5 C7A—C15A—H15F 109.5
H15A—C15—H15B 109.5 H15D—C15A—H15E 109.5
H15A—C15—H15C 109.5 H15D—C15A—H15F 109.5
H15B—C15—H15C 109.5 H15E—C15A—H15F 109.5
H16A—C16—H16B 109.5 H16D—C16A—H16E 109.5
H16A—C16—H16C 109.5 H16D—C16A—H16F 109.5
H16B—C16—H16C 109.5 H16E—C16A—H16F 109.5
O5—C16—H16A 109.5 O5A—C16A—H16D 109.5
O5—C16—H16B 109.5 O5A—C16A—H16E 109.5
O5—C16—H16C 109.5 O5A—C16A—H16F 109.5
C4—O1—C8 112.3 (4) C4A—O1A—C8A 111.8 (4)
C7—O2—H2 109.5 C7A—O2A—H2A 109.5
C6—O3—H3 109.5 C6A—O3A—H3A 109.5
N2—O5—C16 110.1 (4) N2A—O5A—C16A 109.9 (4)
C1—N2—C3—C4 −6.7 (5) C1A—N2A—C3A—C4A 8.7 (5)
C1—N2—C3—C14 173.8 (5) C1A—N2A—C3A—C14A −170.0 (5)
C1—N2—O5—C16 107.4 (5) C1A—N2A—O5A—C16A 76.8 (6)
C1—C5—C6—C7 −165.0 (5) C1A—C5A—C6A—C7A −162.9 (5)
C1—C5—C6—O3 −42.4 (7) C1A—C5A—C6A—O3A −40.7 (7)
N2—C1—C5—C4 −6.6 (5) N2A—C1A—C5A—C4A 5.5 (5)
N2—C1—C5—C6 173.7 (5) N2A—C1A—C5A—C6A −172.8 (5)
N2—C3—C4—C5 2.4 (5) N2A—C3A—C4A—C5A −5.0 (5)
N2—C3—C4—O1 −176.8 (4) N2A—C3A—C4A—O1A 172.2 (4)
C3—N2—O5—C16 −106.7 (5) C3A—N2A—O5A—C16A −77.1 (6)
C3—C4—C5—C1 2.5 (6) C3A—C4A—C5A—C1A −0.2 (6)
C3—C4—C5—C6 −177.7 (4) C3A—C4A—C5A—C6A 178.2 (4)
C3—C4—O1—C8 −166.3 (4) C3A—C4A—O1A—C8A −164.3 (4)
C4—C5—C6—C7 15.3 (7) C4A—C5A—C6A—C7A 19.1 (6)
C4—C5—C6—O3 137.9 (5) C4A—C5A—C6A—O3A 141.3 (4)
C5—C1—N2—C3 8.4 (6) C5A—C1A—N2A—C3A −9.1 (6)
C5—C1—N2—O5 157.1 (4) C5A—C1A—N2A—O5A −165.3 (4)
C5—C4—O1—C8 14.7 (7) C5A—C4A—O1A—C8A 12.4 (7)
C5—C6—C7—C8 −45.3 (5) C5A—C6A—C7A—C8A −49.7 (5)
C5—C6—C7—C15 79.3 (5) C5A—C6A—C7A—C15A 75.0 (5)
C5—C6—C7—O2 −157.4 (4) C5A—C6A—C7A—O2A −162.5 (4)
C6—C7—C8—C9 −176.2 (4) C6A—C7A—C8A—C9A −171.8 (4)
C6—C7—C8—O1 63.7 (5) C6A—C7A—C8A—O1A 66.7 (5)
C7—C8—C9—C10 170.0 (5) C7A—C8A—C9A—C10A 168.8 (4)
C7—C8—O1—C4 −47.0 (5) C7A—C8A—O1A—C4A −45.8 (5)
C8—C9—C10—C11 176.6 (5) C8A—C9A—C10A—C11A −171.9 (5)
C9—C8—O1—C4 −172.2 (4) C9A—C8A—O1A—C4A −172.5 (4)
C9—C10—C11—C12 178.0 (6) C9A—C10A—C11A—C12A 177.7 (5)
C10—C11—C12—C13 177.0 (8) C10A—C11A—C12A—C13A 179.3 (6)
C14—C3—C4—C5 −178.1 (5) C14A—C3A—C4A—C5A 173.7 (5)
C14—C3—C4—O1 2.7 (8) C14A—C3A—C4A—O1A −9.1 (8)
C15—C7—C8—C9 60.4 (6) C15A—C7A—C8A—C9A 64.2 (6)
C15—C7—C8—O1 −59.7 (5) C15A—C7A—C8A—O1A −57.4 (5)
O1—C4—C5—C1 −178.4 (5) O1A—C4A—C5A—C1A −177.1 (5)
O1—C4—C5—C6 1.4 (8) O1A—C4A—C5A—C6A 1.3 (8)
O1—C8—C9—C10 −67.3 (6) O1A—C8A—C9A—C10A −67.7 (6)
O2—C7—C8—C9 −60.1 (5) O2A—C7A—C8A—C9A −55.7 (5)
O2—C7—C8—O1 179.8 (4) O2A—C7A—C8A—O1A −177.2 (4)
O3—C6—C7—C8 −165.6 (4) O3A—C6A—C7A—C8A −173.1 (4)
O3—C6—C7—C15 −41.1 (6) O3A—C6A—C7A—C15A −48.4 (5)
O3—C6—C7—O2 82.2 (5) O3A—C6A—C7A—O2A 74.1 (5)
O4—C1—N2—C3 −173.2 (5) O4A—C1A—N2A—C3A 173.0 (5)
O4—C1—N2—O5 −24.5 (7) O4A—C1A—N2A—O5A 16.8 (8)
O4—C1—C5—C4 175.2 (5) O4A—C1A—C5A—C4A −176.8 (5)
O4—C1—C5—C6 −4.6 (9) O4A—C1A—C5A—C6A 5.0 (9)
O5—N2—C3—C4 −155.6 (4) O5A—N2A—C3A—C4A 164.6 (4)
O5—N2—C3—C14 24.9 (8) O5A—N2A—C3A—C14A −14.2 (8)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O2—H2···O2A 0.82 2.04 2.818 (5) 158
O3—H3···O4i 0.82 2.03 2.836 (5) 168
O2A—H2A···O4i 0.82 2.00 2.685 (5) 141
O3A—H3A···O4Aii 0.82 2.10 2.829 (5) 149

Symmetry codes: (i) −x+2, y+1/2, −z+2; (ii) −x+1, y−1/2, −z+2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: PK2560).

References

  1. Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.
  2. Arunan, E., Desiraju, G. R., Klein, R. A., Sadley, J., Scheiner, S., Alcorta, I., Clary, D. C., Crabtree, R. H., Dannenberg, J. J., Hobza, P., Kjaergaard, H. G., Legon, A. C., Menucci, B. & Nesbitt, D. J. (2011). Pure Appl. Chem. 83, 1637–1641.
  3. Chatzimpaloglou, A., Kolosov, M., Eckols, T. K., Tweardy, D. J. & Sarli, V. (2014). J. Org. Chem. 79, 4043–4054. [DOI] [PubMed]
  4. Chatzimpaloglou, A., Yavropoulou, M. P., Rooij, K. E., Biedermann, R., Mueller, U., Kaskel, S. & Sarli, V. (2012). J. Org. Chem. 77, 9659–9667. [DOI] [PubMed]
  5. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  6. Desiraju, G. R. & Steiner, T. (1999). In The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press Inc.
  7. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  8. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  9. Kobayashi, K., Kobayashi, Y., Nakamura, M., Tamura, O. & Kogen, H. (2015). J. Org. Chem. 80, 1243–1248. [DOI] [PubMed]
  10. Kobayashi, K., Okamoto, I., Morita, N., Kiyotani, T. & Tamura, O. (2011). Org. Biomol. Chem. 9, 5825–5832. [DOI] [PubMed]
  11. Maloney, K. N., Hao, W., Xu, J., Gibbons, J., Hucul, J., Roll, D., Brady, S. F., Schroeder, F. C. & Clardy, J. (2006). Org. Lett. 8, 4067–4070. [DOI] [PMC free article] [PubMed]
  12. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  15. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S205698901501395X/pk2560sup1.cif

e-71-0o625-sup1.cif (259.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901501395X/pk2560Isup2.hkl

e-71-0o625-Isup2.hkl (481.2KB, hkl)

Supporting information file. DOI: 10.1107/S205698901501395X/pk2560Isup3.cml

et al. . DOI: 10.1107/S205698901501395X/pk2560fig1.tif

A view of mol­ecules I (left) and II (right) of phaeosphaeride A. The atom numbering scheme is that of Maloney et al. (2006). Displacement ellipsoids are shown at the 50% probability level.

. DOI: 10.1107/S205698901501395X/pk2560fig2.tif

Projection of the layered crystal structure of phaeosphaeride A on the (100) plane. The dashed lines indicate the short contacts between mol­ecules of phaeosphaeride A (only hydrogen atoms forming hydrogen bonds are shown).

CCDC reference: 1412515

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES