Abstract
The cellular responses to hypoxia are poorly understood. To test the hypothesis that ornithine decarboxylase (ODC; L-ornithine carboxy-lyase; EC 4.1.1.17) activity and polyamine concentrations change in response to acute hypoxia, we performed the following studies. Pregnant Sprague-Dawley rats inspired various O2 concentrations (9-21%) for various time periods (0.5-48 h) from days 15 to 21 of gestation. In fetal brains we measured the activity of ODC, ODC mRNA, and polyamines. In response to 4-h acute mild hypoxia, ODC activity in fetal rat brain (cerebrum, cerebellum, and hippocampus) increased to 330-450% from control values (P < 0.001), after which it declined to control levels in 6-8 h. The 4-h ODC response varied inversely with inspired O2 concentration and was not mimicked by beta 2 agonist or blocked by beta 2-antagonist administration. The ODC response was associated with an increase in fetal brain putrescine concentration to 190% above control at 4-6 h (P < 0.01) and an increase in the polyamines spermidine and spermine to about 115% above control at 6-8 h. We also observed that ODC mRNA increased significantly after 2-4 h of hypoxia. ODC activity and polyamine concentrations appear to be useful enzymatic markers for fetal brain hypoxia. The magnitude and time course of the acute hypoxic ODC increase were similar to responses to extracellular signals that result in differentiation or cell growth. Thus, the well-defined and regulated ODC activity response may represent a protective mechanism in brain to hypoxia.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Benjamin I. J., Kröger B., Williams R. S. Activation of the heat shock transcription factor by hypoxia in mammalian cells. Proc Natl Acad Sci U S A. 1990 Aug;87(16):6263–6267. doi: 10.1073/pnas.87.16.6263. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Benveniste H., Drejer J., Schousboe A., Diemer N. H. Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J Neurochem. 1984 Nov;43(5):1369–1374. doi: 10.1111/j.1471-4159.1984.tb05396.x. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Brot N., Weissbach L., Werth J., Weissbach H. Enzymatic reduction of protein-bound methionine sulfoxide. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2155–2158. doi: 10.1073/pnas.78.4.2155. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Butler A. P., Cohn W. B., Mar P. K., Montgomery R. L. Regulation of ornithine decarboxylase mRNA by phorbol esters and insulin in normal and C-kinase-deficient rat hepatoma cells. J Cell Physiol. 1991 May;147(2):256–264. doi: 10.1002/jcp.1041470210. [DOI] [PubMed] [Google Scholar]
- Carlos R. Q., Seidler F. J., Lappi S. E., Slotkin T. A. Fetal dexamethasone exposure affects basal ornithine decarboxylase activity in developing rat brain regions and alters acute responses to hypoxia and maternal separation. Biol Neonate. 1991;59(2):69–77. doi: 10.1159/000243325. [DOI] [PubMed] [Google Scholar]
- Choi D. W. Glutamate neurotoxicity in cortical cell culture is calcium dependent. Neurosci Lett. 1985 Aug 5;58(3):293–297. doi: 10.1016/0304-3940(85)90069-2. [DOI] [PubMed] [Google Scholar]
- Clô C., Orlandini G. C., Casti A., Guarnieri C. Polyamines as growth stimulating factors in eukariotic cells. Ital J Biochem. 1976 Jan-Feb;25(1):94–114. [PubMed] [Google Scholar]
- Davis J. N., Carlsson A. The effect of hypoxia on monoamine synthesis, levels and metabolism in rat brain. J Neurochem. 1973 Oct;21(4):783–790. doi: 10.1111/j.1471-4159.1973.tb07522.x. [DOI] [PubMed] [Google Scholar]
- Demple B., Linn S. 5,6-Saturated thymine lesions in DNA: production by ultraviolet light or hydrogen peroxide. Nucleic Acids Res. 1982 Jun 25;10(12):3781–3789. doi: 10.1093/nar/10.12.3781. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Feinstein S. C., Dana S. L., McConlogue L., Shooter E. M., Coffino P. Nerve growth factor rapidly induces ornithine decarboxylase mRNA in PC12 rat pheochromocytoma cells. Proc Natl Acad Sci U S A. 1985 Sep;82(17):5761–5765. doi: 10.1073/pnas.82.17.5761. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ferriero D. M., Soberano H. Q., Simon R. P., Sharp F. R. Hypoxia-ischemia induces heat shock protein-like (HSP72) immunoreactivity in neonatal rat brain. Brain Res Dev Brain Res. 1990 Apr 1;53(1):145–150. doi: 10.1016/0165-3806(90)90136-m. [DOI] [PubMed] [Google Scholar]
- Gilad G. M., Gilad V. H. Polyamines can protect against ischemia-induced nerve cell death in gerbil forebrain. Exp Neurol. 1991 Mar;111(3):349–355. doi: 10.1016/0014-4886(91)90102-i. [DOI] [PubMed] [Google Scholar]
- Goyns M. H. The role of polyamines in animal cell physiology. J Theor Biol. 1982 Aug 21;97(4):577–589. doi: 10.1016/0022-5193(82)90359-9. [DOI] [PubMed] [Google Scholar]
- Heby O. Role of polyamines in the control of cell proliferation and differentiation. Differentiation. 1981;19(1):1–20. doi: 10.1111/j.1432-0436.1981.tb01123.x. [DOI] [PubMed] [Google Scholar]
- Hermans R. H., Hunter D. E., McGivern R. F., Cain C. D., Longo L. D. Behavioral sequelae in young rats of acute intermittent antenatal hypoxia. Neurotoxicol Teratol. 1992 Mar-Apr;14(2):119–129. doi: 10.1016/0892-0362(92)90060-n. [DOI] [PubMed] [Google Scholar]
- Imaizumi S., Kayama T., Suzuki J. Chemiluminescence in hypoxic brain--the first report. Correlation between energy metabolism and free radical reaction. Stroke. 1984 Nov-Dec;15(6):1061–1065. doi: 10.1161/01.str.15.6.1061. [DOI] [PubMed] [Google Scholar]
- Kabra P. M., Lee H. K., Lubich W. P., Marton L. J. Solid-phase extraction and determination of dansyl derivatives of unconjugated and acetylated polyamines by reversed-phase liquid chromatography: improved separation systems for polyamines in cerebrospinal fluid, urine and tissue. J Chromatogr. 1986 Jul 11;380(1):19–32. doi: 10.1016/s0378-4347(00)83621-x. [DOI] [PubMed] [Google Scholar]
- Kozuka M., Iwata N. S-adenosyl-L-methionine ameliorates ischemic brain metabolism in spontaneously hypertensive rats. Jpn J Pharmacol. 1989 Feb;49(2):173–179. doi: 10.1254/jjp.49.173. [DOI] [PubMed] [Google Scholar]
- Levin D. E., Hollstein M., Christman M. F., Schwiers E. A., Ames B. N. A new Salmonella tester strain (TA102) with A X T base pairs at the site of mutation detects oxidative mutagens. Proc Natl Acad Sci U S A. 1982 Dec;79(23):7445–7449. doi: 10.1073/pnas.79.23.7445. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matsui Y., Yamagami I., Iwata N. S-adenosyl-L-methionine improves the changes of calcium content and glucose metabolism after transient ischemia in the rat. Jpn J Pharmacol. 1989 Jan;49(1):119–124. doi: 10.1254/jjp.49.119. [DOI] [PubMed] [Google Scholar]
- Navarro H. A., Lachowicz J., Bartolome J., Whitmore W. L., Slotkin T. A. Effects of prenatal dexamethasone on development of ornithine decarboxylase activity in brain and peripheral tissues of rats. Pediatr Res. 1988 Oct;24(4):465–469. doi: 10.1203/00006450-198810000-00009. [DOI] [PubMed] [Google Scholar]
- Nussenzveig I. Z., Sircar R., Wong M. L., Frusciante M. J., Javitt D. C., Zukin S. R. Polyamine effects upon N-methyl-D-aspartate receptor functioning: differential alteration by glutamate and glycine site antagonists. Brain Res. 1991 Oct 11;561(2):285–291. doi: 10.1016/0006-8993(91)91606-2. [DOI] [PubMed] [Google Scholar]
- Parchment R. E., Lewellyn A., Swartzendruber D., Pierce G. B. Serum amine oxidase activity contributes to crisis in mouse embryo cell lines. Proc Natl Acad Sci U S A. 1990 Jun;87(11):4340–4344. doi: 10.1073/pnas.87.11.4340. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paschen W., Schmidt-Kastner R., Hallmayer J., Djuricic B. Polyamines in cerebral ischemia. Neurochem Pathol. 1988 Jul-Dec;9:1–20. doi: 10.1007/BF03160353. [DOI] [PubMed] [Google Scholar]
- Rothman S. M., Olney J. W. Glutamate and the pathophysiology of hypoxic--ischemic brain damage. Ann Neurol. 1986 Feb;19(2):105–111. doi: 10.1002/ana.410190202. [DOI] [PubMed] [Google Scholar]
- Russel D. H., McVicker T. A. Polyamines in the developing rat and in supportive tissues. Biochim Biophys Acta. 1972 Jan 31;259(2):247–258. doi: 10.1016/0005-2787(72)90065-2. [DOI] [PubMed] [Google Scholar]
- Russell D., Snyder S. H. Amine synthesis in rapidly growing tissues: ornithine decarboxylase activity in regenerating rat liver, chick embryo, and various tumors. Proc Natl Acad Sci U S A. 1968 Aug;60(4):1420–1427. doi: 10.1073/pnas.60.4.1420. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saugstad O. D. Hypoxanthine as a measurement of hypoxia. Pediatr Res. 1975 Apr;9(4):158–161. doi: 10.1203/00006450-197504000-00002. [DOI] [PubMed] [Google Scholar]
- Schuber F. Influence of polyamines on membrane functions. Biochem J. 1989 May 15;260(1):1–10. doi: 10.1042/bj2600001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Siesjö B. K., Ljunggren B. Cerebral energy reserves after prolonged hypoxia and ischemia. Arch Neurol. 1973 Dec;29(6):400–407. doi: 10.1001/archneur.1973.00490300062008. [DOI] [PubMed] [Google Scholar]
- Slotkin T. A., Bartolome J. Role of ornithine decarboxylase and the polyamines in nervous system development: a review. Brain Res Bull. 1986 Sep;17(3):307–320. doi: 10.1016/0361-9230(86)90236-4. [DOI] [PubMed] [Google Scholar]
- Slotkin T. A., Cowdery T. S., Orband L., Pachman S., Whitmore W. L. Effects of neonatal hypoxia on brain development in the rat: immediate and long-term biochemical alterations in discrete regions. Brain Res. 1986 May 21;374(1):63–74. doi: 10.1016/0006-8993(86)90395-1. [DOI] [PubMed] [Google Scholar]
- Smith W. T., 4th, Seidler F. J., Slotkin T. A. Acute stimulation of ornithine decarboxylase in neonatal rat brain regions by nicotine: a central receptor-mediated process? Brain Res Dev Brain Res. 1991 Nov 19;63(1-2):85–93. doi: 10.1016/0165-3806(91)90069-u. [DOI] [PubMed] [Google Scholar]
- Storz G., Tartaglia L. A., Ames B. N. Transcriptional regulator of oxidative stress-inducible genes: direct activation by oxidation. Science. 1990 Apr 13;248(4952):189–194. doi: 10.1126/science.2183352. [DOI] [PubMed] [Google Scholar]
- Strong D. D., Beachler A. L., Wergedal J. E., Linkhart T. A. Insulinlike growth factor II and transforming growth factor beta regulate collagen expression in human osteoblastlike cells in vitro. J Bone Miner Res. 1991 Jan;6(1):15–23. doi: 10.1002/jbmr.5650060105. [DOI] [PubMed] [Google Scholar]
- Williams K., Romano C., Molinoff P. B. Effects of polyamines on the binding of [3H]MK-801 to the N-methyl-D-aspartate receptor: pharmacological evidence for the existence of a polyamine recognition site. Mol Pharmacol. 1989 Oct;36(4):575–581. [PubMed] [Google Scholar]