Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1993 Feb 15;90(4):1305–1309. doi: 10.1073/pnas.90.4.1305

Catecholaminergic neurons result from intracerebral implantation of embryonal carcinoma cells.

B E Wojcik 1, F Nothias 1, M Lazar 1, H Jouin 1, J F Nicolas 1, M Peschanski 1
PMCID: PMC45861  PMID: 8094557

Abstract

A replication-defective retrovirus was used to introduce the marker gene nlsLacZ into the murine embryonal carcinoma (EC) cell line PCC7-S-aza-R-1009. Undifferentiated EC cells were implanted into the central nervous system of adult rats. One month later, the grafted cells continued to express the nlsLacZ gene. Immunohistochemical analysis demonstrated the presence of EC-derived neurons. These neurons were capable of expressing tyrosine hydroxylase and extended neurites into the host parenchyma. EC-derived glial cells could not be detected. There was no evidence of tumorigenicity. These results demonstrate the utility of EC cells for introduction of exogenous gene products into the central nervous system in experimental models of gene therapy.

Full text

PDF
1308

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Björklund A., Stenevi U. Intracerebral neural implants: neuronal replacement and reconstruction of damaged circuitries. Annu Rev Neurosci. 1984;7:279–308. doi: 10.1146/annurev.ne.07.030184.001431. [DOI] [PubMed] [Google Scholar]
  2. Bonnerot C., Rocancourt D., Briand P., Grimber G., Nicolas J. F. A beta-galactosidase hybrid protein targeted to nuclei as a marker for developmental studies. Proc Natl Acad Sci U S A. 1987 Oct;84(19):6795–6799. doi: 10.1073/pnas.84.19.6795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bredesen D. E., Hisanaga K., Sharp F. R. Neural transplantation using temperature-sensitive immortalized neural cells: a preliminary report. Ann Neurol. 1990 Feb;27(2):205–207. doi: 10.1002/ana.410270218. [DOI] [PubMed] [Google Scholar]
  4. Debus E., Weber K., Osborn M. Monoclonal antibodies specific for glial fibrillary acidic (GFA) protein and for each of the neurofilament triplet polypeptides. Differentiation. 1983;25(2):193–203. doi: 10.1111/j.1432-0436.1984.tb01355.x. [DOI] [PubMed] [Google Scholar]
  5. Emson P. C., Shoham S., Feler C., Buss T., Price J., Wilson C. J. The use of a retroviral vector to identify foetal striatal neurones transplanted into the adult striatum. Exp Brain Res. 1990;79(2):427–430. doi: 10.1007/BF00608254. [DOI] [PubMed] [Google Scholar]
  6. Ernfors P., Ebendal T., Olson L., Mouton P., Strömberg I., Persson H. A cell line producing recombinant nerve growth factor evokes growth responses in intrinsic and grafted central cholinergic neurons. Proc Natl Acad Sci U S A. 1989 Jun;86(12):4756–4760. doi: 10.1073/pnas.86.12.4756. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fellous M., Günther E., Kemler R., Wiels J., Berger R., Guenet J. L., Jakob H., Jacob F. Association of the H-Y male antigen with beta2-microglobulin on human lymphoid and differentiated mouse teratocarcinoma cell lines. J Exp Med. 1978 Jul 1;148(1):58–70. doi: 10.1084/jem.148.1.58. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fisher L. J., Jinnah H. A., Kale L. C., Higgins G. A., Gage F. H. Survival and function of intrastriatally grafted primary fibroblasts genetically modified to produce L-dopa. Neuron. 1991 Mar;6(3):371–380. doi: 10.1016/0896-6273(91)90246-v. [DOI] [PubMed] [Google Scholar]
  9. Freed W. J., Adinolfi A. M., Laskin J. D., Geller H. M. Transplantation of B16/C3 melanoma cells into the brains of rats and mice. Brain Res. 1989 Apr 24;485(2):349–362. doi: 10.1016/0006-8993(89)90579-9. [DOI] [PubMed] [Google Scholar]
  10. Friedmann T. Progress toward human gene therapy. Science. 1989 Jun 16;244(4910):1275–1281. doi: 10.1126/science.2660259. [DOI] [PubMed] [Google Scholar]
  11. Gage F. H., Fisher L. J. Intracerebral grafting: a tool for the neurobiologist. Neuron. 1991 Jan;6(1):1–12. doi: 10.1016/0896-6273(91)90116-h. [DOI] [PubMed] [Google Scholar]
  12. Gage F. H., Wolff J. A., Rosenberg M. B., Xu L., Yee J. K., Shults C., Friedmann T. Grafting genetically modified cells to the brain: possibilities for the future. Neuroscience. 1987 Dec;23(3):795–807. doi: 10.1016/0306-4522(87)90159-x. [DOI] [PubMed] [Google Scholar]
  13. Gash D. M., Notter M. F., Okawara S. H., Kraus A. L., Joynt R. J. Amitotic neuroblastoma cells used for neural implants in monkeys. Science. 1986 Sep 26;233(4771):1420–1422. doi: 10.1126/science.3749886. [DOI] [PubMed] [Google Scholar]
  14. Hefti F., Hartikka J., Schlumpf M. Implantation of PC12 cells into the corpus striatum of rats with lesions of the dopaminergic nigrostriatal neurons. Brain Res. 1985 Dec 2;348(2):283–288. doi: 10.1016/0006-8993(85)90446-9. [DOI] [PubMed] [Google Scholar]
  15. Horellou P., Guibert B., Leviel V., Mallet J. Retroviral transfer of a human tyrosine hydroxylase cDNA in various cell lines: regulated release of dopamine in mouse anterior pituitary AtT-20 cells. Proc Natl Acad Sci U S A. 1989 Sep;86(18):7233–7237. doi: 10.1073/pnas.86.18.7233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Horellou Philippe, Marlier Lionel, Privat Alain, Mallet Jacques. Behavioural Effect of Engineered Cells that Synthesize l-dopa or Dopamine after Grafting into the Rat Neostriatum. Eur J Neurosci. 1990 Jan;2(1):116–119. doi: 10.1111/j.1460-9568.1990.tb00389.x. [DOI] [PubMed] [Google Scholar]
  17. Jakob H., Nicolas J. F. Mouse teratocarcinoma cells. Methods Enzymol. 1987;151:66–81. doi: 10.1016/s0076-6879(87)51009-6. [DOI] [PubMed] [Google Scholar]
  18. Janeczko K. Spatiotemporal patterns of the astroglial proliferation in rat brain injured at the postmitotic stage of postnatal development: a combined immunocytochemical and autoradiographic study. Brain Res. 1989 Apr 24;485(2):236–243. doi: 10.1016/0006-8993(89)90566-0. [DOI] [PubMed] [Google Scholar]
  19. Lazar M., Lucas M., Lamandé N., Bishop J. G., Gros F., Legault-Demare L. Isolation of murine neuron-specific and non-neuronal enolase cDNA clones. Biochem Biophys Res Commun. 1986 Nov 26;141(1):271–277. doi: 10.1016/s0006-291x(86)80364-3. [DOI] [PubMed] [Google Scholar]
  20. Nolan G. P., Fiering S., Nicolas J. F., Herzenberg L. A. Fluorescence-activated cell analysis and sorting of viable mammalian cells based on beta-D-galactosidase activity after transduction of Escherichia coli lacZ. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2603–2607. doi: 10.1073/pnas.85.8.2603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nothias F., Dusart I., Roudier F., Peschanski M. First month of development of fetal neurons transplanted as a cell suspension into the adult CNS. Neuroscience. 1989;33(3):605–616. doi: 10.1016/0306-4522(89)90412-0. [DOI] [PubMed] [Google Scholar]
  22. Paulin D., Jakob H., Jacob F., Weber K., Osborn M. In vitro differentiation of mouse teratocarcinoma cells monitored by intermediate filament expression. Differentiation. 1982;22(2):90–99. doi: 10.1111/j.1432-0436.1982.tb01231.x. [DOI] [PubMed] [Google Scholar]
  23. Pfeiffer S. E., Jakob H., Mikoshiba K., Dubois P., Guenet J. L., Nicolas J. F., Gaillard J., Chevance G., Jacob F. Differentiation of a teratocarcinoma line: preferential development of cholinergic neurons. J Cell Biol. 1981 Jan;88(1):57–66. doi: 10.1083/jcb.88.1.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Ronnett G. V., Hester L. D., Nye J. S., Connors K., Snyder S. H. Human cortical neuronal cell line: establishment from a patient with unilateral megalencephaly. Science. 1990 May 4;248(4955):603–605. doi: 10.1126/science.1692158. [DOI] [PubMed] [Google Scholar]
  25. Rosenberg M. B., Friedmann T., Robertson R. C., Tuszynski M., Wolff J. A., Breakefield X. O., Gage F. H. Grafting genetically modified cells to the damaged brain: restorative effects of NGF expression. Science. 1988 Dec 16;242(4885):1575–1578. doi: 10.1126/science.3201248. [DOI] [PubMed] [Google Scholar]
  26. Shimohama S., Rosenberg M. B., Fagan A. M., Wolff J. A., Short M. P., Breakefield X. O., Friedmann T., Gage F. H. Grafting genetically modified cells into the rat brain: characteristics of E. coli beta-galactosidase as a reporter gene. Brain Res Mol Brain Res. 1989 Jun;5(4):271–278. doi: 10.1016/0169-328x(89)90061-2. [DOI] [PubMed] [Google Scholar]
  27. Snyder E. Y., Deitcher D. L., Walsh C., Arnold-Aldea S., Hartwieg E. A., Cepko C. L. Multipotent neural cell lines can engraft and participate in development of mouse cerebellum. Cell. 1992 Jan 10;68(1):33–51. doi: 10.1016/0092-8674(92)90204-p. [DOI] [PubMed] [Google Scholar]
  28. Wolff J. A., Fisher L. J., Xu L., Jinnah H. A., Langlais P. J., Iuvone P. M., O'Malley K. L., Rosenberg M. B., Shimohama S., Friedmann T. Grafting fibroblasts genetically modified to produce L-dopa in a rat model of Parkinson disease. Proc Natl Acad Sci U S A. 1989 Nov;86(22):9011–9014. doi: 10.1073/pnas.86.22.9011. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES