Skip to main content
American Journal of Cancer Research logoLink to American Journal of Cancer Research
. 2015 Aug 15;5(9):2892–2911.

EGFR mutation incidence in non-small-cell lung cancer of adenocarcinoma histology: a systematic review and global map by ethnicity (mutMapII)

Anita Midha 1, Simon Dearden 2, Rose McCormack 2
PMCID: PMC4633915  PMID: 26609494

Abstract

Mutations in the epidermal growth factor receptor (EGFR) gene are commonly observed in non-small-cell lung cancer (NSCLC), particularly in tumors of adenocarcinoma (ADC) histology (NSCLC/ADC). Robust data exist regarding the prevalence of EGFR mutations in Western and Asian patients with NSCLC/ADC, yet there is a lack of data for patients of other ethnicities. This review collated available data with the aim of creating a complete, global picture of EGFR mutation frequency in patients with NSCLC/ADC by ethnicity. Worldwide literature reporting EGFR mutation frequency in patients with NSCLC/ADC was reviewed, to create a map of the world populated with EGFR mutation frequency by country (a ‘global EGFR mutMap’). A total of 151 worldwide studies (n=33162 patients with NSCLC/ADC, of which 9749 patients had EGFR mutation-positive NSCLC/ADC) were included. There was substantial variation in EGFR mutation frequency between studies, even when grouped by geographic region or individual country. As expected, the Asia-Pacific NSCLC/ADC subgroup had the highest EGFR mutation frequency (47% [5958/12819; 87 studies; range 20%-76%]) and the lowest EGFR mutation frequency occurred in the Oceania NSCLC/ADC subgroup (12% [69/570; 4 studies; range 7%-36%]); however, comparisons between regions were limited due to the varying sizes of the patient populations studied. In all regional (geographic) subgroups where data were available, EGFR mutation frequency in NSCLC/ADC was higher in women compared with men, and in never-compared with ever-smokers. This review provides the foundation for a global map of EGFR mutation frequency in patients with NSCLC/ADC. The substantial lack of data from several large geographic regions of the world, notably Africa, the Middle East, Central Asia, and Central and South America, highlights a potential lack of routine mutation testing and the need for further investigations in these regions.

Keywords: Adenocarcinoma, EGFR mutation frequency, non-small-cell lung cancer

Introduction

Lung cancer represents a significant clinical burden worldwide. Recent statistics (WHO 2012) have indicated that lung cancer is the most common cancer in men globally, with an age-standardised rate (ASR; per 100,000) of 34.2 and an incidence of 1.2 million, and the fourth most common cancer in women (ASR 13.6; incidence 0.6 million) after cancer of the breast, colorectum, and cervix [1]. Consequently, lung cancer is the leading cause of cancer-related mortality worldwide, accounting for 19.4% of all cancer-related deaths [1].

Non-small-cell lung cancer (NSCLC) accounts for ~85% of primary lung cancers, and the majority of patients present with advanced or metastatic disease at diagnosis [2]. Adenocarcinoma (ADC) is one of the most common histological subtypes of NSCLC [3,4]. Molecular profiling of tumor samples from patients with NSCLC has identified driver mutations that may contribute to early carcinogenesis in more than 80% of ADC cases, including epidermal growth factor receptor (EGFR) mutations [5], which are now considered to be commonly associated with NSCLC tumors [5-13].

Mutation status improves predictions of the behavior and characterization of tumors of ADC histology when compared with the use of prognostic factors, such as tumor node metastasis stage [14]. Mutation testing has enabled many patients with EGFR mutation-positive NSCLC of ADC histology (referred to as NSCLC/ADC throughout) to receive personalized treatment with EGFR tyrosine kinase inhibitors (TKIs), which specifically target EGFR oncogenes [9-12], based on the molecular characteristics of their tumor, with the result that treatment outcomes are optimized in these patients [15,16]. It is now widely accepted that response to EGFR TKIs is greater in patients with tumors harboring EGFR mutations compared with patients without EGFR mutations; results from several clinical trials have demonstrated the successful use of mutation testing to ascertain the mutation status of the tumors of patients with NSCLC [16-18], and superior response to EGFR TKIs in patients with EGFR mutation-positive NSCLC compared with patients with EGFR mutation-negative NSCLC [16,17,19].

Current clinical guidelines now advocate the role of tumor EGFR mutation testing for patients with NSCLC during initial diagnosis [20,21], as do several working groups [22-24]. More clinicians are requesting EGFR mutation tests for their patients with NSCLC/ADC, and the number of facilities that conduct the tests has increased [25,26]. However, adoption of testing may be influenced by differences both within and between geographic regions/countries. It is important to understand where EGFR mutation testing is less routinely carried out, and why, to facilitate routes for clinicians/patients to access tests and have the opportunity to receive personalized therapy.

Studies of patients with NSCLC/ADC have provided robust data demonstrating the frequency of EGFR mutations in Western and Asian populations only [5,27]. There is limited understanding of the availability of mutation-status data indicating the presence of testing, and the prevalence and distribution of EGFR mutations in tumors of patients with NSCLC/ADC globally; further to this, the potential environmental [28] and genetic [29] influences on population differences in EGFR mutation status are yet to be fully elucidated. The aim of this systematic review is to describe the EGFR mutation frequency in patients with NSCLC/ADC from multiple ethnic backgrounds and create a global map of EGFR mutation prevalence (a ‘global EGFR mutMap’).

Methods

Literature search

A literature search of the MEDLINE database was carried out on February 18, 2014, to identify journal articles reporting studies of EGFR mutation frequency/incidence in patients with NSCLC/ADC. The following search criteria were used: [EGFR] AND [mutation] AND [lung cancer] AND [adenocarcinoma] AND [publication date after January 1, 2004]. The following were excluded: [non-English language papers] AND [Review] AND [Comment] AND [Editorial] AND [Letter].

Publications yielded in this initial search were reviewed and shortlisted; studies were only included if they had a population of ≥ 100 patients, although this criterion was waived in countries where data were sparse.

Where the initial search yielded no data from certain countries, additional literature searches of PubMed, BIOSIS, and Embase were carried out on June 23, 2014, using the previous search criteria with the addition of specific country names, to identify any additional relevant publications.

Analysis of EGFR mutation frequency

EGFR mutation frequency data were analyzed by country, gender, and smoking status (never- or ever-smokers, according to the definitions of the original studies). A map of the world was populated with available EGFR mutation frequency data by country (a ‘global EGFR mutMap’).

Results

Included studies

The initial literature search yielded 720 publications, from which 139 were selected, based upon the criteria that they contained relevant EGFR mutation frequency data in patients with NSCLC/ADC. Gaps were identified in Brazil, Denmark, Finland, Latin America, Mexico, Norway, Russia, Saudi Arabia, South America, Sweden, Turkey, and the UK; therefore, an additional literature search of PubMed, BIOSIS, and Embase was carried out on June 23, 2014, which yielded an additional 12 publications. This resulted in a total of 151 studies included in this review (n=33162 patients with NSCLC, of which n=9749 had EGFR mutation-positive NSCLC/ADC) (Figure 1; Supplementary Table 1). This included 70 smaller studies of < 100 patients with NSCLC/ADC (19/70 studies, n ≥ 70 patients; 40/70, n ≥ 50 patients), in the interest of providing as comprehensive a review as possible (Supplementary Table 1) from the following countries: Australia, Bangladesh, Brazil, China, Germany, Greece, Italy, Japan, Lithuania, Taiwan, Turkey, the UK, the USA, the Philippines, Pakistan, Republic of Korea, and Singapore.

Figure 1.

Figure 1

Flow of studies identified and included in the meta-analyses.

As expected from previous reports [5] and consistent with NSCLC incidence figures [1], there were more data available for NSCLC/ADC patient populations in the Asia-Pacific and European geographic regions (87 studies, 12819 patients; 39 studies, 10464 patients, respectively). Data available for patient populations of the other geographic regions included were as follows (in decreasing order): North America (19 studies, 7396 patients; including one study in US African-Americans [121 patients]); Indian subcontinent (5 studies, 1090 patients); South America (5 studies, 686 patients); Oceania (4 studies, 570 patients); and Africa (1 study, 137 patients) (Table 1).

Table 1.

Frequency of EGFR mutations in patients with NSCLC of ADC histology by country

Country No. studies EGFR mutation frequency

No. patients with an EGFR mutation/total no. patients Overall EGFR mutation frequency (%) EGFR mutation frequency range (%)
Asia-Pacific
    Overall 87 5958/12819 47 20-76
    China 18 [27,34-50] 1403/2949 48 27-66
    Hong Kong 3 [27,51,52] 312/585 53 47-58
    Japan 33 [53-84] 2069/4619 45 21-68
    Malaysia 2 [85,86] 272/599 45 39-47
    Philippines 1 [27] 34/65 52 N/A
    Republic of Korea 17 [87-103] 1248/2884 43 20-56
    Singapore 2 [104,105] 57/142 40 39-43
    Taiwan 9 [27,75,106-112] 423/739 57 36-76
    Thailand 1 [27] 63/117 54 N/A
    Vietnam 1 [27] 77/120 64 N/A
Europe
    Overall 39 1527/10464 15 6-41
    Austria 1 [113] 7/96 7 N/A
    Czech Republic 1 [114] 21/101 21 N/A
    Finland 1 [115] 58/398 10 N/A
    France 2 [116,117] 193/1289 15 15-17
    Germany 7 [118-124] 175/1573 11 6-41
    Greece 2 [125,126] 30/137 22 20-22
    Italy 9 [127-135] 306/2223 14 10-33
    Lithuania 1 [136] 8/65 12 N/A
    The Netherlands 2 [13,137] 162/1110 15 11-20
    Norway 1 [138] 16/141 11 N/A
    Poland 3 [139-141] 88/678 13 11-14
    Portugal 1 [142] 29/216 13 N/A
    Russia 2 [143,144] 53/240 22 20-31
    Slovakia 1 [145] 56/285 20 N/A
    Spain 1 [146] 283/1634 17 N/A
    Sweden 1 [147] 16/148 11 N/A
    Turkey 2 [148,149] 15/41 37 22-41
    UK 1 [150] 11/89 12 N/A
North America
    Overall 19 1638/7396 22 3-42
    Canada 2 [151,152] 84/612 14 14
    USA 16 [7,75,153-165] 1531/6663 23 3-42
    USA (African Americans) 1 [166] 23/121 19 N/A
Indian subcontinent
    Overall 5 278/1090 26 22-27
    Bangladesh 1 [167] 14/61 23 N/A
    India 3 [27,168,169] 261/1018 26 22-26
    Pakistan 1 [170] 3/11 27 N/A
South America
    Overall 5 250/686 36 9-67
    Argentina 1 [30] 47/244 19 N/A
    Brazil 3 [171-173] 67/239 28 9-34
    Peru 1 [30] 136/203 67 N/A
Oceania
    Overall 4 69/570 12 7-36
    Australia 4 [75,174-176] 69/570 12 7-36
Africa
    Overall 1 29/137 21 N/A
    Morocco 1 [177] 29/137 21 N/A

ADC adenocarcinoma, EGFR epidermal growth factor receptor, N/A not available, NSCLC non-small-cell lung cancer.

EGFR mutation frequency in patients with NSCLC/ADC by geographic region

EGFR mutation frequency in patients with NSCLC/ADC is summarized in Table 1 and is represented as a ‘global EGFR mutMap’ in Figure 2.

Figure 2.

Figure 2

Global EGFR mutMap: EGFR mutation frequency in patients with NSCLC of ADC histology by country (where data available). See Table 1 for study and patient numbers for each country. ADC adenocarcinoma, EGFR epidermal growth factor receptor, NSCLC non-small-cell lung cancer.

When analyzed by geographic region, the Asia-Pacific NSCLC/ADC subgroup had the highest EGFR mutation frequency at 47% (n=5958/12819; 87 studies; range 20%-76%). Within this region, Taiwan had the highest EGFR mutation frequency in patients with NSCLC/ADC (57% [n=423/739; 9 studies; range 36%-76%]), while Singapore had the lowest (40% [n=57/142; 2 studies; range 39%-43%]), although comparisons between these countries were limited due to the differing patient population sizes (Table 1).

Of all the geographic regions included, the Oceania NSCLC/ADC subgroup, which only included data from Australia, had the lowest EGFR mutation frequency at 12% [n=69/570; 4 studies; range 7%-36%]) (Table 1; Figure 2).

The South American NSCLC/ADC subgroup had the widest EGFR mutation frequency range and second highest EGFR mutation frequency (36% [n=250/686; 5 studies; range 9%-67%]); although this result was skewed by data from one study of patients from Peru (EGFR mutation frequency, 67% [n=136/203]). The narrowest EGFR mutation frequency range was observed in the Indian subcontinent NSCLC/ADC subgroup (EGFR mutation frequency, 26% [n=278/1090; 5 studies; range 22%-27%]) (Table 1; Figure 2).

EGFR mutation frequency in patients with NSCLC/ADC by geographic region and gender

In all regions where data were available, EGFR mutation frequency in patients with NSCLC/ADC was higher in women compared with men: Europe, 22% versus 9%; Asia-Pacific 60% versus 37%; Indian subcontinent, 31% versus 23%; Africa, 48% versus 8%; and North America 28% versus 19% (Table 2). All country-specific NSCLC/ADC subgroups followed this pattern, apart from Bangladesh, where the EGFR mutation frequency was higher in men than in women (26% versus 14%, respectively) (Table 2).

Table 2.

Frequency of EGFR mutations in patients with NSCLC of ADC histology by gender and country

Country No. studies EGFR mutation frequency

Males Females

No. patients with an EGFR mutation/total no. patients Overall EGFR mutation frequency (%) EGFR mutation frequency range (%) No. patients with an EGFR mutation/total no. patients Overall EGFR mutation frequency (%) EGFR mutation frequency range (%)
Asia-Pacific
    Overall 20 473/1250 37 20-80 763/1263 60 0-83
    China 4 [36,40,46,49] 41/86 48 25-80 43/62 69 29-83
    Hong Kong 1 [51] 28/84 33 N/A 87/131 66 N/A
    Japan 10 [60,61,65,68,69,74,76,77,80,82] 345/893 39 34-67 534/866 62 0-76
    Republic of Korea 4 [87,89,94,95] 41/152 27 20-36 75/162 46 38-80
    Taiwan 1 [111] 18/35 51 N/A 24/42 57 N/A
Europe
    Overall 9 88/1035 9 4-18 133/616 22 3-35
    Austria 1 [113] 3/58 5 N/A 4/38 11 N/A
    Germany 2 [118,120] 15/211 7 4-12 27/163 17 14-23
    Greece 1 [125] 3/17 18 N/A 1/3 33 N/A
    Italy 3 [127,133,135] 26/323 8 6-13 49/215 23 13-35
    Poland 1 [140] 25/310 8 N/A 30/121 25 N/A
    Russia 1 [143] 16/116 14 N/A 22/76 29 N/A
North America
    Overall 2 175/923 19 8-20 459/1656 28 21-28
    USA 2 [7,157] 175/923 19 8-20 459/1656 28 21-28
Indian subcontinent
    Overall 3 160/689 23 23-26 99/318 31 14-33
    Bangladesh 1 [167] 12/47 26 N/A 2/14 14 N/A
    India 2 [168,169] 148/642 23 23 97/304 32 32-33
Africa
    Overall 1 7/91 8 N/A 22/46 48 N/A
    Morocco 1 [177] 7/91 8 N/A 22/46 48 N/A

ADC adenocarcinoma, EGFR epidermal growth factor receptor, N/A not available, NSCLC non-small-cell lung cancer.

EGFR mutation frequency in patients with NSCLC/ADC by geographic region and smoking status

In all regions where data were available, EGFR mutation frequency in NSCLC/ADC was higher in never-smokers compared with ever-smokers: Europe, 35% versus 8%; Asia-Pacific, 64% versus 33%; Indian subcontinent, 32% versus 17%; Africa, 41% versus 6%; and North America, 47% versus 14% (Table 3). Similar to EGFR mutation prevalence by gender, this pattern was followed by all country-specific subgroups apart from Bangladesh and Taiwan, where EGFR mutation frequency was higher in ever-smokers compared with never-smokers (24% versus 22% for Bangladesh; 57% versus 53% for Taiwan, respectively) (Table 3).

Table 3.

Frequency of EGFR mutations in patients with NSCLC of ADC histology by smoking status and country

Country No. studies EGFR mutation frequency

Never-smokers* Ever-smokers*

No. patients with an EGFR mutation/total no. patients Overall EGFR mutation frequency (%) EGFR mutation frequency range (%) No. patients with an EGFR mutation/total no. patients Overall EGFR mutation frequency (%) EGFR mutation frequency range (%)
North America
    Overall 6a 680/1433 47 38-56 433/3151 14 6-16
    USA 6a [7,155,157,159,161,178] 680/1433 47 38-56 433/3151 14 6-16
Asia-Pacific
    Overall 20 847/1312 64 40-83 426/1242 33 11-100
    China 4 [36,40,46,49] 97/134 72 50-79 28/66 42 11-100
    Hong Kong 1 [51] 94/129 73 N/A 21/86 24 N/A
    Japan 9 [60,61,68,69,74,76,77,80,82] 549/829 66 57-83 326/919 35 26-54
    Republic of Korea 4 [87,89,94,95] 81/171 47 40-62 35/143 24 21-29
    Taiwan 1 [111] 26/49 53 N/A 16/28 57 N/A
Europe
    Overall 6 61/176 35 23-50 31/373 8 3-17
    Austria 1 [113] 5/22 23 N/A 2/74 3 N/A
    Germany 1 [120] 12/24 50 N/A 8/90 9 N/A
    Greece 1 [125] 1/2 50 N/A 3/18 17 N/A
    Italy 2 [133,135] 13/34 38 37-50 10/93 11 5-13
    Russia 1 [143] 30/94 32 N/A 8/98 8 N/A
Indian subcontinent
    Overall 2 38/118 32 22-35 19/109 17 14-24
    Bangladesh 1 [167] 5/23 22 N/A 9/38 24 N/A
    India 1 [169] 33/95 35 N/A 10/71 14 N/A
Africa
    Overall 1 24/58 41 N/A 5/79 6 N/A
    Morocco 1 [177] 24/58 41 N/A 5/79 6 N/A
*

As defined by original study criteria.

a

Ever-smokers category had 5 studies.

ADC adenocarcinoma, EGFR epidermal growth factor receptor, N/A not available, NSCLC non-small-cell lung cancer.

Discussion

This review investigated EGFR mutation frequency in patients with NSCLC/ADC to create a ‘global EGFR mutMap’ to visually represent EGFR mutation frequency in countries where data were available, and to identify where there is still a need for more studies to be carried out.

Results of this review reflected the robust data available for EGFR mutation frequency in Western/Asian populations, building upon and supporting the results of previous studies and meta-analyses in these ethnicities. In the first ‘mutMap’ study of the incidence and coincidence of genetic mutations associated with NSCLC, EGFR mutation frequency was 47.9% in Asian patients with NSCLC/ADC, compared with 19.2% in Western patients with NSCLC/ADC [5]. These data are similar to our findings in related patient populations: Asia-Pacific subgroup, 47%; and European subgroup, 15%. The slight decrease in EGFR mutation frequency in the European subgroup of this study compared with the first mutMap study may be due to differing studies/patient populations used in the analyses. In addition, EGFR mutations in patients with NSCLC/ADC were more prevalent in, but not exclusive to, Asian patients compared with patients of other ethnicities included in this study; and across most countries where data were available, EGFR mutations in patients with NSCLC/ADC were more prevalent in, but not exclusive to, females and never-smokers, with only data from patients in Bangladesh and Taiwan differing from this pattern. Results of the first mutMap study similarly indicated that although EGFR mutations occurred more frequently in females, Asians, and never-/light-smokers, mutations were also found outside of these three subgroups [5]. Likewise, results of the PIONEER molecular epidemiology study across seven Asian countries/regions also found that although EGFR mutations occurred more frequently in females, Asians, and never-smokers, EGFR mutations were not restricted to patients with these clinical characteristics. In fact, more than 50% of patients with EGFR mutations in the PIONEER study were not female non-smokers [27]. These findings, therefore, support EGFR mutation testing in all patients with NSCLC/ADC.

The review also highlighted that despite the burden of NSCLC reported to exist in these large geographic regions by global registries [1], a substantial lack of data was observed from Africa, the Middle East, Central Asia, and Central and South America; with no data available at all for several countries within these regions (Figure 2). The importance of determining the prevalence of EGFR mutations in these regions/countries is emphasized by the interesting result that EGFR mutation frequency in NSCLC/ADC was particularly high in patients from Peru (67% [n=136/203]) [30], with the population of this study taken almost exclusively from the indigenous (‘Mestizo’), not historically Caucasian, population (68% versus 32% of the study sample, respectively). While only limited conclusions can be drawn from this single study, it does suggest NSCLC patient populations around the world may yet yield important findings. The paucity of published data in these regions/countries may reflect a lack of routine mutation testing in the clinical management of patients with NSCLC, which may be due to various factors, including tumor sampling practices, patients’ ability/willingness to undergo sampling, and availability/use of mutation tests. More global research into the infrastructure around diagnosis and management of NSCLC, and EGFR mutation frequencies, in regions outside of Europe and Asia will further understanding of this, and facilitate development of local clinical guidelines.

Where data were available, there was substantial variation in EGFR mutation frequency between studies, even when grouped by geographic region and country, which may be explained by several factors - for example, pre-selection of patients, differing patient baseline characteristics, underlying genetic differences between populations, variations in mutation-testing practices, and environmental factors-which are yet to be fully understood [28]. Considering genetic differences between populations, as well as different EGFR mutation subtypes existing [31], EGFR amplification and regulation of protein expression may also differ between patients [29]; a number of studies have identified polymorphisms in the EGFR promoter region and demonstrated that these polymorphisms have a functional impact on EGFR protein transcription or expression in non-cancerous tissues [32,33]. Furthermore, a study by Nomura et al. [29] has demonstrated that differences in prevalence of three of these polymorphisms exist between Asian and Western patients. This review found that EGFR mutation prevalence in the Indian subcontinent and South American populations lies between the prevalence in Asian and Western populations. One hypothesis may be that this intermediate EGFR mutation expression pattern may be explained, in part, by differences in EGFR promoter polymorphisms. Therefore, a study is potentially warranted that examines reasons for differences in prevalence of EGFR mutations and the link with, for example, environmental factors or EGFR promoter polymorphisms, and potentially EGFR expression in non-cancerous tissues.

This review comprises the most comprehensive summary to date of the global EGFR mutation frequency in patients with NSCLC/ADC. However, it has to be considered that the results presented here reflect only the available and relevant published data and, therefore, comprise a small sample size relative to the global population. This is especially relevant for this study, where data from 70 small studies (in Australia, Bangladesh, Brazil, China, Germany, Greece, Italy, Japan, Lithuania, Taiwan, Turkey, the UK, the USA, the Philippines, Pakistan, Republic of Korea, and Singapore), each of < 100 patients with NSCLC, were included in the interest of providing the most comprehensive review possible. Variations in study design and diagnostic and mutation-testing procedures between studies should also be considered.

Further work in less-studied regions-in particular, Africa, the Middle East, Central Asia, and Central and South America-is required to widen the scope and validity of this ‘global EGFR mutMap’. In addition, global mutation frequency data for multiple oncogenes known to be associated with NSCLC could be used to further inform global registries of the prevalence of NSCLC [1], to facilitate a registry of NSCLC incidence by mutation status. Building on the foundations laid here, further efforts to accurately establish the prevalence of EGFR mutations in a greater number of NSCLC/ADC patient populations will help to ensure that the appropriate knowledge, clinical guidelines, and resources are in place to improve treatment outcomes for more patients worldwide.

Acknowledgements

This work was supported by AstraZeneca. We thank Louise Brown, from Complete Medical Communications, who provided medical writing support, funded by AstraZeneca.

Disclosure of conflict of interest

Anita Midha, Simon Dearden and Rose McCormack are employees of AstraZeneca and hold shares in AstraZeneca.

Supporting Information

ajcr0005-2892-f3.pdf (212KB, pdf)

References

  • 1.Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2014;136:E359–E386. doi: 10.1002/ijc.29210. [DOI] [PubMed] [Google Scholar]
  • 2.Crinò L, Weder W, van Meerbeeck J, Felip E. Early stage and locally advanced (non-metastatic) non-small-cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2010;21(Suppl 5):v103–v115. doi: 10.1093/annonc/mdq207. [DOI] [PubMed] [Google Scholar]
  • 3.Youlden DR, Cramb SM, Baade PD. The International Epidemiology of Lung Cancer: geographical distribution and secular trends. J Thorac Oncol. 2008;3:819–831. doi: 10.1097/JTO.0b013e31818020eb. [DOI] [PubMed] [Google Scholar]
  • 4.Couraud S, Zalcman G, Milleron B, Morin F, Souquet PJ. Lung cancer in never smokers--a review. Eur J Cancer. 2012;48:1299–1311. doi: 10.1016/j.ejca.2012.03.007. [DOI] [PubMed] [Google Scholar]
  • 5.Dearden S, Stevens J, Wu YL, Blowers D. Mutation incidence and coincidence in non small-cell lung cancer: meta-analyses by ethnicity and histology (mutMap) Ann Oncol. 2013;24:2371–2376. doi: 10.1093/annonc/mdt205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Bell DW, Lynch TJ, Haserlat SM, Harris PL, Okimoto RA, Brannigan BW, Sgroi DC, Muir B, Riemenschneider MJ, Iacona RB, Krebs AD, Johnson DH, Giaccone G, Herbst RS, Manegold C, Fukuoka M, Kris MG, Baselaga J, Ochs JS, Haber DA. Epidermal growth factor receptor mutations and gene amplification in nonsmall-cell lung cancer: molecular analysis of the IDEAL/INTACT gefitinib trials. J. Clin. Oncol. 2005;23:8081–8092. doi: 10.1200/JCO.2005.02.7078. [DOI] [PubMed] [Google Scholar]
  • 7.Ding L, Getz G, Wheeler DA, Mardis ER, McLellan MD, Cibulskis K, Sougnez C, Greulich H, Muzny DM, Morgan MB, Fulton L, Fulton RS, Zhang Q, Wendl MC, Lawrence MS, Larson DE, Chen K, Dooling DJ, Sabo A, Hawes AC, Shen H, Jhangiani SN, Lewis LR, Hall O, Zhu Y, Mathew T, Ren Y, Yao J, Scherer SE, Clerc K, Metcalf GA, Ng B, Milosavljevic A, Gonzalez-Garay ML, Osborne JR, Meyer R, Shi X, Tang Y, Koboldt DC, Lin L, Abbott R, Miner TL, Pohl C, Fewell G, Haipek C, Schmidt H, Dunford-Shore BH, Kraja A, Crosby SD, Sawyer CS, Vickery T, Sander S, Robinson J, Winckler W, Baldwin J, Chirieac LR, Dutt A, Fennell T, Hanna M, Johnson BE, Onofrio RC, Thomas RK, Tonon G, Weir BA, Zhao X, Ziaugra L, Zody MC, Giordano T, Orringer MB, Roth JA, Spitz MR, Wistuba II, Ozenberger B, Good PJ, Chang AC, Beer DG, Watson MA, Ladanyi M, Broderick S, Yoshizawa A, Travis WD, Pao W, Province MA, Weinstock GM, Varmus HE, Gabriel SB, Lander ES, Gibbs RA, Meyerson M, Wilson RK. Somatic mutations affect key pathways in lung adenocarcinoma. Nature. 2008;455:1069–1075. doi: 10.1038/nature07423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Douillard JY, Shepherd FA, Hirsh V, Mok T, Socinski MA, Gervais R, Liao ML, Bischoff H, Reck M, Sellers MV, Watkins CL, Speake G, Armour AA, Kim ES. Molecular predictors of outcome with gefitinib and docetaxel in previously treated non-small-cell lung cancer: data from the randomized phase III INTEREST trial. J. Clin. Oncol. 2010;28:744–752. doi: 10.1200/JCO.2009.24.3030. [DOI] [PubMed] [Google Scholar]
  • 9.Hirsch FR, Varella-Garcia M, Cappuzzo F, McCoy J, Bemis L, Xavier AC, Dziadziuszko R, Gumerlock P, Chansky K, West H, Gazdar AF, Crino L, Gandara DR, Franklin WA, Bunn Jr PA. Combination of EGFR gene copy number and protein expression predicts outcome for advanced non-small-cell lung cancer patients treated with gefitinib. Ann Oncol. 2007;18:752–760. doi: 10.1093/annonc/mdm003. [DOI] [PubMed] [Google Scholar]
  • 10.Hirsch FR, Bunn PA Jr. EGFR testing in lung cancer is ready for prime time. Lancet Oncol. 2009;10:432–433. doi: 10.1016/S1470-2045(09)70110-X. [DOI] [PubMed] [Google Scholar]
  • 11.Mitsudomi T, Kosaka T, Endoh H, Horio Y, Hida T, Mori S, Hatooka S, Shinoda M, Takahashi T, Yatabe Y. Mutations of the epidermal growth factor receptor gene predict prolonged survival after gefitinib treatment in patients with non-small-cell lung cancer with postoperative recurrence. J. Clin. Oncol. 2005;23:2513–2520. doi: 10.1200/JCO.2005.00.992. [DOI] [PubMed] [Google Scholar]
  • 12.Riely GJ, Politi KA, Miller VA, Pao W. Update on epidermal growth factor receptor mutations in non-small cell lung cancer. Clin Cancer Res. 2006;12:7232–7241. doi: 10.1158/1078-0432.CCR-06-0658. [DOI] [PubMed] [Google Scholar]
  • 13.Smits AJ, Kummer JA, Hinrichs JW, Herder GJ, Scheidel-Jacobse KC, Jiwa NM, Ruijter TE, Nooijen PT, Looijen-Salamon MG, Ligtenberg MJ, Thunnissen FB, Heideman DA, de Weger RA, Vink A. EGFR and KRAS mutations in lung carcinomas in the Dutch population: increased EGFR mutation frequency in malignant pleural effusion of lung adenocarcinoma. Cell Oncol (Dordr) 2012;35:189–196. doi: 10.1007/s13402-012-0078-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Russell PA, Wainer Z, Wright GM, Daniels M, Conron M, Williams RA. Does lung adenocarcinoma subtype predict patient survival?: A clinicopathologic study based on the new International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society international multidisciplinary lung adenocarcinoma classification. J Thorac Oncol. 2011;6:1496–1504. doi: 10.1097/JTO.0b013e318221f701. [DOI] [PubMed] [Google Scholar]
  • 15.Sequist LV, Heist RS, Shaw AT, Fidias P, Rosovsky R, Temel JS, Lennes IT, Digumarthy S, Waltman BA, Bast E, Tammireddy S, Morrissey L, Muzikansky A, Goldberg SB, Gainor J, Channick CL, Wain JC, Gaissert H, Donahue DM, Muniappan A, Wright C, Willers H, Mathisen DJ, Choi NC, Baselga J, Lynch TJ, Ellisen LW, Mino-Kenudson M, Lanuti M, Borger DR, Iafrate AJ, Engelman JA, Dias-Santagata D. Implementing multiplexed genotyping of non-small-cell lung cancers into routine clinical practice. Ann Oncol. 2011;22:2616–2624. doi: 10.1093/annonc/mdr489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Rosell R, Carcereny E, Gervais R, Vergnenegre A, Massuti B, Felip E, Palmero R, Garcia-Gomez R, Pallares C, Sanchez JM, Porta R, Cobo M, Garrido P, Longo F, Moran T, Insa A, De Marinis F, Corre R, Bover I, Illiano A, Dansin E, de Castro J, Milella M, Reguart N, Altavilla G, Jimenez U, Provencio M, Moreno MA, Terrasa J, Munoz-Langa J, Valdivia J, Isla D, Domine M, Molinier O, Mazieres J, Baize N, Garcia-Campelo R, Robinet G, Rodriguez-Abreu D, Lopez-Vivanco G, Gebbia V, Ferrera-Delgado L, Bombaron P, Bernabe R, Bearz A, Artal A, Cortesi E, Rolfo C, Sanchez-Ronco M, Drozdowskyj A, Queralt C, de Aguirre I, Ramirez JL, Sanchez JJ, Molina MA, Taron M, Paz-Ares L. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-smallcell lung cancer (EURTAC): a multicentre, openlabel, randomised phase 3 trial. Lancet Oncol. 2012;13:239–246. doi: 10.1016/S1470-2045(11)70393-X. [DOI] [PubMed] [Google Scholar]
  • 17.Yang JC, Wu YL, Chan V, Kurnianda J, Nakagawa K, Saijo N, Fukuoka M, McWalter G, McCormack R, Mok TS. Epidermal growth factor receptor mutation analysis in previously unanalyzed histology samples and cytology samples from the phase III Iressa Pan-ASia Study (IPASS) Lung Cancer. 2014;83:174–181. doi: 10.1016/j.lungcan.2013.11.021. [DOI] [PubMed] [Google Scholar]
  • 18.Douillard JY, Ostoros G, Cobo M, Ciuleanu T, Cole R, McWalter G, Walker J, Dearden S, Webster A, Milenkova T, McCormack R. Gefitinib treatment in EGFR mutated caucasian NSCLC: circulating-free tumor DNA as a surrogate for determination of EGFR status. J Thorac Oncol. 2014;9:1345–1353. doi: 10.1097/JTO.0000000000000263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Zhou C, Wu YL, Chen G, Feng J, Liu XQ, Wang C, Zhang S, Wang J, Zhou S, Ren S, Lu S, Zhang L, Hu C, Hu C, Luo Y, Chen L, Ye M, Huang J, Zhi X, Zhang Y, Xiu Q, Ma J, Zhang L, You C. Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): a multicentre, openlabel, randomised, phase 3 study. Lancet Oncol. 2011;12:735–742. doi: 10.1016/S1470-2045(11)70184-X. [DOI] [PubMed] [Google Scholar]
  • 20.National Comprehensive Cancer Network. Practice guidelines in oncology-version V.3.2012 (non-small-cell lung cancer) Available at: http://www.nccn.org/professionals/physician_gls/pdf/nscl.pdf. Last updated 2012. Accessed 19 May 2015. [DOI] [PubMed]
  • 21.NICE. EGFR-TK mutation testing in adults with locally advanced or metastatic non-small-cell lung cancer. Available at: http://www.nice.org.uk/guidance/dg9. Last updated 2013. Accessed 8 July 2015. [DOI] [PMC free article] [PubMed]
  • 22.Marchetti A, Normanno N. Recommendations for mutational analysis of EGFR in lung carcinoma. Pathologica. 2010;102:119–126. [PubMed] [Google Scholar]
  • 23.Pirker R, Herth FJ, Kerr KM, Filipits M, Taron M, Gandara D, Hirsch FR, Grunenwald D, Popper H, Smit E, Dietel M, Marchetti A, Manegold C, Schirmacher P, Thomas M, Rosell R, Cappuzzo F, Stahel R. Consensus for EGFR mutation testing in non-small cell lung cancer: results from a European workshop. J Thorac Oncol. 2010;5:1706–1713. doi: 10.1097/JTO.0b013e3181f1c8de. [DOI] [PubMed] [Google Scholar]
  • 24.Eberhard DA, Giaccone G, Johnson BE. Biomarkers of response to epidermal growth factor receptor inhibitors in Non-Small-Cell Lung Cancer Working Group: standardization for use in the clinical trial setting. J. Clin. Oncol. 2008;26:983–994. doi: 10.1200/JCO.2007.12.9858. [DOI] [PubMed] [Google Scholar]
  • 25.Choi YL, Sun JM, Cho J, Rampal S, Han J, Parasuraman B, Guallar E, Lee G, Lee J, Shim YM. EGFR mutation testing in patients with advanced non-small cell lung cancer: a comprehensive evaluation of real-world practice in an East Asian tertiary hospital. PLoS One. 2013;8:e56011. doi: 10.1371/journal.pone.0056011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Keam B, Kim DW, Park JH, Lee JO, Kim TM, Lee SH, Chung DH, Heo DS. How molecular understanding affects to prescribing patterns and clinical outcome of gefitinib in non-small cell lung cancer? 10 year experience of single institution. Cancer Res Treat. 2013;45:178–185. doi: 10.4143/crt.2013.45.3.178. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Shi Y, Au JS, Thongprasert S, Srinivasan S, Tsai CM, Khoa MT, Heeroma K, Itoh Y, Cornelio G, Yang PC. A prospective, molecular epidemiology study of EGFR mutations in Asian patients with advanced non-small cell lung cancer of adenocarcinoma histology (PIONEER) J Thorac Oncol. 2014;9:154–162. doi: 10.1097/JTO.0000000000000033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Lam WK, White NW, Chan-Yeung MM. Lung cancer epidemiology and risk factors in Asia and Africa. Int J Tuberc Lung Dis. 2004;8:1045–1057. [PubMed] [Google Scholar]
  • 29.Nomura M, Shigematsu H, Li L, Suzuki M, Takahashi T, Estess P, Siegelman M, Feng Z, Kato H, Marchetti A, Shay JW, Spitz MR, Wistuba II, Minna JD, Gazdar AF. Polymorphisms, mutations, and amplification of the EGFR gene in non-small cell lung cancers. PLoS Med. 2007;4:e125. doi: 10.1371/journal.pmed.0040125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Arrieta O, Cardona AF, Federico Bramuglia G, Gallo A, Campos-Parra AD, Serrano S, Castro M, Avilés A, Amorin E, Kirchuk R, Cuello M, Borbolla J, Riemersma O, Becerra H, Rosell R. Genotyping non-small cell lung cancer (NSCLC) in Latin America. J Thorac Oncol. 2011;6:1955–1959. doi: 10.1097/JTO.0b013e31822f655f. [DOI] [PubMed] [Google Scholar]
  • 31.Tang X, Varella-Garcia M, Xavier AC, Massarelli E, Ozburn N, Moran C, Wistuba II. Epidermal growth factor receptor abnormalities in the pathogenesis and progression of lung adenocarcinomas. Cancer Prev Res (Phila) 2008;1:192–200. doi: 10.1158/1940-6207.CAPR-08-0032. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Liu W, Innocenti F, Wu MH, Desai AA, Dolan ME, Cook EH Jr, Ratain MJ. A functional common polymorphism in a Sp1 recognition site of the epidermal growth factor receptor gene promoter. Cancer Res. 2005;65:46–53. [PubMed] [Google Scholar]
  • 33.Gebhardt F, Zanker KS, Brandt B. Modulation of epidermal growth factor receptor gene transcription by a polymorphic dinucleotide repeat in intron 1. J Biol Chem. 1999;274:13176–13180. doi: 10.1074/jbc.274.19.13176. [DOI] [PubMed] [Google Scholar]
  • 34.Qin BM, Chen X, Zhu JD, Pei DQ. Identification of EGFR kinase domain mutations among lung cancer patients in China: implication for targeted cancer therapy. Cell Res. 2005;15:212–217. doi: 10.1038/sj.cr.7290289. [DOI] [PubMed] [Google Scholar]
  • 35.Mu XL, Li LY, Zhang XT, Wang MZ, Feng RE, Cui QC, Zhou HS, Guo BQ. Gefitinib-sensitive mutations of the epidermal growth factor receptor tyrosine kinase domain in Chinese patients with non-small cell lung cancer. Clin Cancer Res. 2005;11:4289–4294. doi: 10.1158/1078-0432.CCR-04-2506. [DOI] [PubMed] [Google Scholar]
  • 36.Wang Z, Wu YL, Zhang GC, Zhou Q, Xu CR, Guo AL. EGFR/KRAS mutations and gefitinib therapy in Chinese NSCLC patients. Onkologie. 2008;31:174–178. doi: 10.1159/000116736. [DOI] [PubMed] [Google Scholar]
  • 37.Bai H, Mao L, Wang HS, Zhao J, Yang L, An TT, Wang X, Duan CJ, Wu NM, Guo ZQ, Liu YX, Liu HN, Wang YY, Wang J. Epidermal growth factor receptor mutations in plasma DNA samples predict tumor response in Chinese patients with stages IIIB to IV non-small-cell lung cancer. J. Clin. Oncol. 2009;27:2653–2659. doi: 10.1200/JCO.2008.17.3930. [DOI] [PubMed] [Google Scholar]
  • 38.He C, Liu M, Zhou C, Zhang J, Ouyang M, Zhong N, Xu J. Detection of epidermal growth factor receptor mutations in plasma by mutantenriched PCR assay for prediction of the response to gefitinib in patients with non-smallcell lung cancer. Int J Cancer. 2009;125:2393–2399. doi: 10.1002/ijc.24653. [DOI] [PubMed] [Google Scholar]
  • 39.An SJ, Chen ZH, Su J, Zhang XC, Zhong WZ, Yang JJ, Zhou Q, Yang XN, Huang L, Guan JL, Nie Q, Yan HH, Mok TS, Wu YL. Identification of enriched driver gene alterations in subgroups of non-small cell lung cancer patients based on histology and smoking status. PLoS One. 2012;7:e40109. doi: 10.1371/journal.pone.0040109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Han CB, Ma JT, Li F, Zhao JZ, Jing W, Zhou Y, Zou HW. EGFR and KRAS mutations and altered c-Met gene copy numbers in primary non-small cell lung cancer and associated stage N2 lymph node-metastasis. Cancer Lett. 2012;314:63–72. doi: 10.1016/j.canlet.2011.09.012. [DOI] [PubMed] [Google Scholar]
  • 41.Lai Y, Zhang Z, Li J, Sun D, Zhou Y, Jiang T, Han Y, Huang L, Zhu Y, Li X, Yan X. EGFR mutations in surgically resected fresh specimens from 697 consecutive Chinese patients with non-small cell lung cancer and their relationships with clinical features. Int J Mol Sci. 2013;14:24549–24559. doi: 10.3390/ijms141224549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Liu Y, Wu BQ, Zhong HH, Hui P, Fang WG. Screening for EGFR and KRAS mutations in non-small cell lung carcinomas using DNA extraction by hydrothermal pressure coupled with PCR-based direct sequencing. Int J Clin Exp Pathol. 2013;6:1880–1889. [PMC free article] [PubMed] [Google Scholar]
  • 43.Zhang H, Liu D, Li S, Zheng Y, Yang X, Li X, Zhang Q, Qin N, Lu J, Ren-Heidenreich L, Yang H, Wu Y, Zhang X, Nong J, Sun Y, Zhang S. Comparison of EGFR signaling pathway somatic DNA mutations derived from peripheral blood and corresponding tumor tissue of patients with advanced non-small-cell lung cancer using liquidchip technology. J Mol Diagn. 2013;15:819–826. doi: 10.1016/j.jmoldx.2013.06.006. [DOI] [PubMed] [Google Scholar]
  • 44.He Y, Li S, Ren S, Cai W, Li X, Zhao C, Li J, Chen X, Gao G, Li W, Zhou F, Zhou C. Impact of family history of cancer on the incidence of mutation in epidermal growth factor receptor gene in non-small cell lung cancer patients. Lung Cancer. 2013;81:162–166. doi: 10.1016/j.lungcan.2013.05.004. [DOI] [PubMed] [Google Scholar]
  • 45.Li Y, Li Y, Yang T, Wei S, Wang J, Wang M, Wang Y, Zhou Q, Liu H, Chen J. Clinical significance of EML4-ALK fusion gene and association with EGFR and KRAS gene mutations in 208 Chinese patients with non-small cell lung cancer. PLoS One. 2013;8:e52093. doi: 10.1371/journal.pone.0052093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Han B, Zhou X, Zhang RX, Zang WF, Chen ZY, Song HD, Wan HY, Zheng CX. Mutations of the epidermal growth factor receptor gene in NSCLC patients. Oncol Lett. 2011;2:1233–1237. doi: 10.3892/ol.2011.366. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Cai YR, Zhang HQ, Qu Y, Mu J, Zhao D, Zhou LJ, Yan H, Ye JW, Liu Y. Expression of MET and SOX2 genes in non-small cell lung carcinoma with EGFR mutation. Oncol Rep. 2011;26:877–885. doi: 10.3892/or.2011.1349. [DOI] [PubMed] [Google Scholar]
  • 48.McMillen E, Ye F, Li G, Wu Y, Yin G, Liu W. Epidermal growth factor receptor (EGFR) mutation and p-EGFR expression in resected nonsmall cell lung cancer. Exp Lung Res. 2010;36:531–537. doi: 10.3109/01902148.2010.482176. [DOI] [PubMed] [Google Scholar]
  • 49.Li C, Sun Y, Fang Z, Han X, Fang R, Zhang Y, Pan Y, Zhang W, Ren Y, Ji H, Chen H. Comprehensive analysis of epidermal growth factor receptor gene status in lung adenocarcinoma. J Thorac Oncol. 2011;6:1016–1021. doi: 10.1097/JTO.0b013e318215a4f2. [DOI] [PubMed] [Google Scholar]
  • 50.Xu JM, Han Y, Duan HQ, Gao EM, Zhang Y, Liu XQ, Zhang JS, Toschi L, Galetta D, Azzariti A, Paradiso A. EGFR mutations and HER2/3 protein expression and clinical outcome in Chinese advanced non-small cell lung cancer patients treated with gefitinib. J Cancer Res Clin Oncol. 2009;135:771–782. doi: 10.1007/s00432-008-0512-1. [DOI] [PubMed] [Google Scholar]
  • 51.Tam IY, Chung LP, Suen WS, Wang E, Wong MC, Ho KK, Lam WK, Chiu SW, Girard L, Minna JD, Gazdar AF, Wong MP. Distinct epidermal growth factor receptor and KRAS mutation patterns in non-small cell lung cancer patients with different tobacco exposure and clinicopathologic features. Clin Cancer Res. 2006;12:1647–1653. doi: 10.1158/1078-0432.CCR-05-1981. [DOI] [PubMed] [Google Scholar]
  • 52.Wong DW, Leung EL, So KK, Tam IY, Sihoe AD, Cheng LC, Ho KK, Au JS, Chung LP, Pik Wong M. The EML4-ALK fusion gene is involved in various histologic types of lung cancers from nonsmokers with wild-type EGFR and KRAS. Cancer. 2009;115:1723–1733. doi: 10.1002/cncr.24181. [DOI] [PubMed] [Google Scholar]
  • 53.Horiike A, Kimura H, Nishio K, Ohyanagi F, Satoh Y, Okumura S, Ishikawa Y, Nakagawa K, Horai T, Nishio M. Detection of epidermal growth factor receptor mutation in transbronchial needle aspirates of non-small cell lung cancer. Chest. 2007;131:1628–1634. doi: 10.1378/chest.06-1673. [DOI] [PubMed] [Google Scholar]
  • 54.Hosokawa S, Toyooka S, Fujiwara Y, Tokumo M, Soh J, Takigawa N, Hotta K, Yoshino T, Date H, Tanimoto M, Kiura K. Comprehensive analysis of EGFR signaling pathways in Japanese patients with non-small cell lung cancer. Lung Cancer. 2009;66:107–113. doi: 10.1016/j.lungcan.2009.01.005. [DOI] [PubMed] [Google Scholar]
  • 55.Inamura K, Takeuchi K, Togashi Y, Nomura K, Ninomiya H, Okui M, Satoh Y, Okumura S, Nakagawa K, Soda M, Choi YL, Niki T, Mano H, Ishikawa Y. EML4-ALK fusion is linked to histological characteristics in a subset of lung cancers. J Thorac Oncol. 2008;3:13–17. doi: 10.1097/JTO.0b013e31815e8b60. [DOI] [PubMed] [Google Scholar]
  • 56.Iwakiri S, Mino N, Takahashi T, Sonobe M, Nagai S, Okubo K, Wada H, Date H, Miyahara R. Higher expression of chemokine receptor CXCR7 is linked to early and metastatic recurrence in pathological stage I nonsmall cell lung cancer. Cancer. 2009;115:2580–2593. doi: 10.1002/cncr.24281. [DOI] [PubMed] [Google Scholar]
  • 57.Kobayashi M, Sonobe M, Takahashi T, Yoshizawa A, Ishikawa M, Kikuchi R, Okubo K, Huang CL, Date H. Clinical significance of BRAF gene mutations in patients with nonsmall cell lung cancer. Anticancer Res. 2011;31:4619–4623. [PubMed] [Google Scholar]
  • 58.Koga T, Takeshita M, Yano T, Maehara Y, Sueishi K. CHFR hypermethylation and EGFR mutation are mutually exclusive and exhibit contrastive clinical backgrounds and outcomes in non-small cell lung cancer. Int J Cancer. 2011;128:1009–1017. doi: 10.1002/ijc.25447. [DOI] [PubMed] [Google Scholar]
  • 59.Kondo M, Yokoyama T, Fukui T, Yoshioka H, Yokoi K, Nagasaka T, Imaizumi K, Kume H, Hasegawa Y, Shimokata K, Sekido Y. Mutations of epidermal growth factor receptor of non-small cell lung cancer were associated with sensitivity to gefitinib in recurrence after surgery. Lung Cancer. 2005;50:385–391. doi: 10.1016/j.lungcan.2005.06.008. [DOI] [PubMed] [Google Scholar]
  • 60.Kosaka T, Yatabe Y, Endoh H, Kuwano H, Takahashi T, Mitsudomi T. Mutations of the epidermal growth factor receptor gene in lung cancer: biological and clinical implications. Cancer Res. 2004;64:8919–8923. doi: 10.1158/0008-5472.CAN-04-2818. [DOI] [PubMed] [Google Scholar]
  • 61.Kosaka T, Yatabe Y, Onozato R, Kuwano H, Mitsudomi T. Prognostic implication of EGFR, KRAS, and TP53 gene mutations in a large cohort of Japanese patients with surgically treated lung adenocarcinoma. J Thorac Oncol. 2009;4:22–29. doi: 10.1097/JTO.0b013e3181914111. [DOI] [PubMed] [Google Scholar]
  • 62.Matsumoto S, Iwakawa R, Takahashi K, Kohno T, Nakanishi Y, Matsuno Y, Suzuki K, Nakamoto M, Shimizu E, Minna JD, Yokota J. Prevalence and specificity of LKB1 genetic alterations in lung cancers. Oncogene. 2007;26:5911–5918. doi: 10.1038/sj.onc.1210418. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.Mitsudomi T, Kosaka T, Endoh H, Horio Y, Hida T, Mori S, Hatooka S, Shinoda M, Takahashi T, Yatabe Y. Mutations of the epidermal growth factor receptor gene predict prolonged survival after gefitinib treatment in patients with non-small-cell lung cancer with postoperative recurrence. J. Clin. Oncol. 2005;23:2513–2520. doi: 10.1200/JCO.2005.00.992. [DOI] [PubMed] [Google Scholar]
  • 64.Mochinaga K, Tsuchiya T, Nagasaki T, Arai J, Tominaga T, Yamasaki N, Matsumoto K, Miyazaki T, Nanashima A, Hayashi T, Tsukamoto K, Nagayasu T. High expression of dihydropyrimidine dehydrogenase in lung adenocarcinoma is associated with mutations in epidermal growth factor receptor: implications for the treatment of non--small-cell lung cancer using 5-fluorouracil. Clin Lung Cancer. 2014;15:136–144. doi: 10.1016/j.cllc.2013.09.002. [DOI] [PubMed] [Google Scholar]
  • 65.Nagashima O, Ohashi R, Yoshioka Y, Inagaki A, Tajima M, Koinuma Y, Iwakami S, Iwase A, Sasaki S, Tominaga S, Takahashi K. High prevalence of gene abnormalities in young patients with lung cancer. J Thorac Dis. 2013;5:27–30. doi: 10.3978/j.issn.2072-1439.2012.12.02. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66.Nakajima T, Yasufuku K, Nakagawara A, Kimura H, Yoshino I. Multigene mutation analysis of metastatic lymph nodes in nonsmall cell lung cancer diagnosed by endobronchial ultrasound-guided transbronchial needle aspiration. Chest. 2011;140:1319–1324. doi: 10.1378/chest.10-3186. [DOI] [PubMed] [Google Scholar]
  • 67.Nakamura R, Inage Y, Tobita R, Mori K, Numata T, Yanai H, Endo T, Ohtani H, Satoh H, Yuzawa K, Koizumi M, Ueki H. Epidermal growth factor receptor mutations: effect on volume doubling time of non-small-cell lung cancer patients. J Thorac Oncol. 2014;9:1340–1344. doi: 10.1097/JTO.0000000000000022. [DOI] [PubMed] [Google Scholar]
  • 68.Ninomiya H, Hiramatsu M, Inamura K, Nomura K, Okui M, Miyoshi T, Okumura S, Satoh Y, Nakagawa K, Nishio M, Horai T, Miyata S, Tsuchiya E, Fukayama M, Ishikawa Y. Correlation between morphology and EGFR mutations in lung adenocarcinomas. Significance of the micropapillary pattern and the hobnail cell type. Lung Cancer. 2009;63:235–240. doi: 10.1016/j.lungcan.2008.04.017. [DOI] [PubMed] [Google Scholar]
  • 69.Okayama H, Kohno T, Ishii Y, Shimada Y, Shiraishi K, Iwakawa R, Furuta K, Tsuta K, Shibata T, Yamamoto S, Watanabe S, Sakamoto H, Kumamoto K, Takenoshita S, Gotoh N, Mizuno H, Sarai A, Kawano S, Yamaguchi R, Miyano S, Yokota J. Identification of genes upregulated in ALKpositive and EGFR/KRAS/ALK-negative lung adenocarcinomas. Cancer Res. 2012;72:100–111. doi: 10.1158/0008-5472.CAN-11-1403. [DOI] [PubMed] [Google Scholar]
  • 70.Onozato R, Kosaka T, Kuwano H, Sekido Y, Yatabe Y, Mitsudomi T. Activation of MET by gene amplification or by splice mutations deleting the juxtamembrane domain in primary resected lung cancers. J Thorac Oncol. 2009;4:5–11. doi: 10.1097/JTO.0b013e3181913e0e. [DOI] [PubMed] [Google Scholar]
  • 71.Sakuma Y, Matsukuma S, Yoshihara M, Nakamura Y, Noda K, Nakayama H, Kameda Y, Tsuchiya E, Miyagi Y. Distinctive evaluation of nonmucinous and mucinous subtypes of bronchioloalveolar carcinomas in EGFR and K-ras gene-mutation analyses for Japanese lung adenocarcinomas: confirmation of the correlations with histologic subtypes and gene mutations. Am J Clin Pathol. 2007;128:100–108. doi: 10.1309/WVXFGAFLAUX48DU6. [DOI] [PubMed] [Google Scholar]
  • 72.Sasaki H, Endo K, Takada M, Kawahara M, Kitahara N, Tanaka H, Okumura M, Matsumura A, Iuchi K, Kawaguchi T, Yukiue H, Kobayashi Y, Yano M, Fujii Y. L858R EGFR mutation status correlated with clinico-pathological features of Japanese lung cancer. Lung Cancer. 2006;54:103–108. doi: 10.1016/j.lungcan.2006.06.003. [DOI] [PubMed] [Google Scholar]
  • 73.Sasaki H, Endo K, Takada M, Kawahara M, Kitahara N, Tanaka H, Okumura M, Matsumura A, Iuchi K, Kawaguchi T, Kawano O, Yukiue H, Yokoyama T, Yano M, Fujii Y. EGFR exon 20 insertion mutation in Japanese lung cancer. Lung Cancer. 2007;58:324–328. doi: 10.1016/j.lungcan.2007.06.024. [DOI] [PubMed] [Google Scholar]
  • 74.Sasaki H, Endo K, Okuda K, Kawano O, Kitahara N, Tanaka H, Matsumura A, Iuchi K, Takada M, Kawahara M, Kawaguchi T, Yukiue H, Yokoyama T, Yano M, Fujii Y. Epidermal growth factor receptor gene amplification and gefitinib sensitivity in patients with recurrent lung cancer. J Cancer Res Clin Oncol. 2008;134:569–577. doi: 10.1007/s00432-007-0320-z. [DOI] [PubMed] [Google Scholar]
  • 75.Shigematsu H, Lin L, Takahashi T, Nomura M, Suzuki M, Wistuba II, Fong KM, Lee H, Toyooka S, Shimizu N, Fujisawa T, Feng Z, Roth JA, Herz J, Minna JD, Gazdar AF. Clinical and biological features associated with epidermal growth factor receptor gene mutations in lung cancers. J Natl Cancer Inst. 2005;97:339–346. doi: 10.1093/jnci/dji055. [DOI] [PubMed] [Google Scholar]
  • 76.Sonobe M, Manabe T, Wada H, Tanaka F. Mutations in the epidermal growth factor receptor gene are linked to smoking-independent, lung adenocarcinoma. Br J Cancer. 2005;93:355–363. doi: 10.1038/sj.bjc.6602707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77.Sugio K, Uramoto H, Onitsuka T, Mizukami M, Ichiki Y, Sugaya M, Yasuda M, Takenoyama M, Oyama T, Hanagiri T, Yasumoto K. Prospective phase II study of gefitinib in nonsmall cell lung cancer with epidermal growth factor receptor gene mutations. Lung Cancer. 2009;64:314–318. doi: 10.1016/j.lungcan.2008.09.010. [DOI] [PubMed] [Google Scholar]
  • 78.Suzuki M, Shigematsu H, Iizasa T, Hiroshima K, Nakatani Y, Minna JD, Gazdar AF, Fujisawa T. Exclusive mutation in epidermal growth factor receptor gene, HER-2, and KRAS, and synchronous methylation of nonsmall cell lung cancer. Cancer. 2006;106:2200–2207. doi: 10.1002/cncr.21853. [DOI] [PubMed] [Google Scholar]
  • 79.Takahashi T, Sonobe M, Kobayashi M, Yoshizawa A, Menju T, Nakayama E, Mino N, Iwakiri S, Sato K, Miyahara R, Okubo K, Manabe T, Date H. Clinicopathologic features of non-small-cell lung cancer with EML4-ALK fusion gene. Ann Surg Oncol. 2010;17:889–897. doi: 10.1245/s10434-009-0808-7. [DOI] [PubMed] [Google Scholar]
  • 80.Togashi Y, Masago K, Kubo T, Fujimoto D, Sakamori Y, Nagai H, Kim YH, Togashi K, Mishima M. Association between vascularpoor area of primary tumors and epidermal growth factor receptor gene status in advanced lung adenocarcinoma. Med Oncol. 2012;29:3169–3175. doi: 10.1007/s12032-012-0235-7. [DOI] [PubMed] [Google Scholar]
  • 81.Tomizawa Y, Iijima H, Sunaga N, Sato K, Takise A, Otani Y, Tanaka S, Suga T, Saito R, Ishizuka T, Dobashi K, Minna JD, Nakajima T, Mori M. Clinicopathologic significance of the mutations of the epidermal growth factor receptor gene in patients with non-small cell lung cancer. Clin Cancer Res. 2005;11:6816–6822. doi: 10.1158/1078-0432.CCR-05-0441. [DOI] [PubMed] [Google Scholar]
  • 82.Toyooka S, Tokumo M, Shigematsu H, Matsuo K, Asano H, Tomii K, Ichihara S, Suzuki M, Aoe M, Date H, Gazdar AF, Shimizu N. Mutational and epigenetic evidence for independent pathways for lung adenocarcinomas arising in smokers and never smokers. Cancer Res. 2006;66:1371–1375. doi: 10.1158/0008-5472.CAN-05-2625. [DOI] [PubMed] [Google Scholar]
  • 83.Uhara M, Matsuda K, Taira C, Higuchi Y, Okumura N, Yamauchi K. Simple polymerase chain reaction for the detection of mutations and deletions in the epidermal growth factor receptor gene: applications of this method for the diagnosis of non-small-cell lung cancer. Clin Chim Acta. 2009;401:68–72. doi: 10.1016/j.cca.2008.11.018. [DOI] [PubMed] [Google Scholar]
  • 84.Varella-Garcia M, Mitsudomi T, Yatabe Y, Kosaka T, Nakajima E, Xavier AC, Skokan M, Zeng C, Franklin WA, Bunn PA Jr, Hirsch FR. EGFR and HER2 genomic gain in recurrent non-small cell lung cancer after surgery: impact on outcome to treatment with gefitinib and association with EGFR and KRAS mutations in a Japanese cohort. J Thorac Oncol. 2009;4:318–325. doi: 10.1097/JTO.0b013e31819667a3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85.Liam CK, Leow HR, How SH, Pang YK, Chua KT, Lim BK, Lai NL, Kuan YC, Pailoor J, Rajadurai P. Epidermal growth factor receptor mutations in non-small cell lung cancers in a multiethnic malaysian patient population. Asian Pac J Cancer Prev. 2014;15:321–326. doi: 10.7314/apjcp.2014.15.1.321. [DOI] [PubMed] [Google Scholar]
  • 86.Shi Yeen TN, Pathmanathan R, Shiran MS, Ahmad Zaid FA, Cheah YK. Detection of epidermal growth factor receptor mutations in formalin fixed paraffin embedded biopsies in Malaysian non-small cell lung cancer patients. J Biomed Sci. 2013;20:22. doi: 10.1186/1423-0127-20-22. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 87.Bae NC, Chae MH, Lee MH, Kim KM, Lee EB, Kim CH, Park TI, Han SB, Jheon S, Jung TH, Park JY. EGFR, ERBB2, and KRAS mutations in Korean non-small cell lung cancer patients. Cancer Genet Cytogenet. 2007;173:107–113. doi: 10.1016/j.cancergencyto.2006.10.007. [DOI] [PubMed] [Google Scholar]
  • 88.Kang HJ, Lim HJ, Park JS, Cho YJ, Yoon HI, Chung JH, Lee JH, Lee CT. Comparison of clinical characteristics between patients with ALK-positive and EGFR-positive lung adenocarcinoma. Respir Med. 2014;108:388–394. doi: 10.1016/j.rmed.2013.11.020. [DOI] [PubMed] [Google Scholar]
  • 89.Kang SM, Kang HJ, Shin JH, Kim H, Shin DH, Kim SK, Kim JH, Chung KY, Kim SK, Chang J. Identical epidermal growth factor receptor mutations in adenocarcinomatous and squamous cell carcinomatous components of adenosquamous carcinoma of the lung. Cancer. 2007;109:581–587. doi: 10.1002/cncr.22413. [DOI] [PubMed] [Google Scholar]
  • 90.Kim HJ, Lee KY, Kim YC, Kim KS, Lee SY, Jang TW, Lee MK, Shin KC, Lee GH, Lee JC, Lee JE, Kim SY. Detection and comparison of peptide nucleic acid-mediated real-time polymerase chain reaction clamping and direct gene sequencing for epidermal growth factor receptor mutations in patients with non-small cell lung cancer. Lung Cancer. 2012;75:321–325. doi: 10.1016/j.lungcan.2011.08.005. [DOI] [PubMed] [Google Scholar]
  • 91.Kim HR, Lee JC, Kim YC, Kim KS, Oh IJ, Lee SY, Jang TW, Lee MK, Shin KC, Lee GH, Ryu JS, Jang SH, Son JW, Lee JE, Kim SY, Kim HJ, Lee KY. Clinical characteristics of non-small cell lung cancer patients who experienced acquired resistance during gefitinib treatment. Lung Cancer. 2014;83:252–258. doi: 10.1016/j.lungcan.2013.11.008. [DOI] [PubMed] [Google Scholar]
  • 92.Kim YT, Seong YW, Jung YJ, Jeon YK, Park IK, Kang CH, Kim JH. The presence of mutations in epidermal growth factor receptor gene is not a prognostic factor for long-term outcome after surgical resection of non-small-cell lung cancer. J Thorac Oncol. 2013;8:171–178. doi: 10.1097/JTO.0b013e318277a3bb. [DOI] [PubMed] [Google Scholar]
  • 93.Lee JO, Kim TM, Lee SH, Kim DW, Kim S, Jeon YK, Chung DH, Kim WH, Kim YT, Yang SC, Kim YW, Heo DS, Bang YJ. Anaplastic lymphoma kinase translocation: a predictive biomarker of pemetrexed in patients with non-small cell lung cancer. J Thorac Oncol. 2011;6:1474–1480. doi: 10.1097/JTO.0b013e3182208fc2. [DOI] [PubMed] [Google Scholar]
  • 94.Lee SY, Kim MJ, Jin G, Yoo SS, Park JY, Choi JE, Jeon HS, Cho S, Lee EB, Cha SI, Park TI, Kim CH, Jung TH, Park JY. Somatic mutations in epidermal growth factor receptor signaling pathway genes in non-small cell lung cancers. J Thorac Oncol. 2010;5:1734–1740. doi: 10.1097/JTO.0b013e3181f0beca. [DOI] [PubMed] [Google Scholar]
  • 95.Lee YJ, Park IK, Park MS, Choi HJ, Cho BC, Chung KY, Kim SK, Chang J, Moon JW, Kim H, Choi SH, Kim JH. Activating mutations within the EGFR kinase domain: a molecular predictor of disease-free survival in resected pulmonary adenocarcinoma. J Cancer Res Clin Oncol. 2009;135:1647–1654. doi: 10.1007/s00432-009-0611-7. [DOI] [PubMed] [Google Scholar]
  • 96.Lee YJ, Shim HS, Kang YA, Hong SJ, Kim HK, Kim H, Kim SK, Choi SH, Kim JH, Cho BC. Dose effect of cigarette smoking on frequency and spectrum of epidermal growth factor receptor gene mutations in Korean patients with non-small cell lung cancer. J Cancer Res Clin Oncol. 2010;136:1937–1944. doi: 10.1007/s00432-010-0853-4. [DOI] [PubMed] [Google Scholar]
  • 97.Na II, Byun BH, Kim KM, Cheon GJ, Choe du H, Koh JS, Lee DY, Ryoo BY, Baek H, Lim SM, Yang SH, Kim CH, Lee JC. 18F-FDG uptake and EGFR mutations in patients with non-small cell lung cancer: a single-institution retrospective analysis. Lung Cancer. 2010;67:76–80. doi: 10.1016/j.lungcan.2009.03.010. [DOI] [PubMed] [Google Scholar]
  • 98.Na II, Park JH, Choe du H, Lee JK, Koh JS. Association of epidermal growth factor receptor mutations with metastatic presentations in non-small cell lung cancer. ISRN Oncol. 2011;2011:756265. doi: 10.5402/2011/756265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 99.Oh JE, An CH, Yoo NJ, Lee SH. Detection of low-level EGFR T790M mutation in lung cancer tissues. APMIS. 2011;119:403–411. doi: 10.1111/j.1600-0463.2011.02738.x. [DOI] [PubMed] [Google Scholar]
  • 100.Park S, Holmes-Tisch AJ, Cho EY, Shim YM, Kim J, Kim HS, Lee J, Park YH, Ahn JS, Park K, Jänne PA, Ahn MJ. Discordance of molecular biomarkers associated with epidermal growth factor receptor pathway between primary tumors and lymph node metastasis in non-small cell lung cancer. J Thorac Oncol. 2009;4:809–815. doi: 10.1097/JTO.0b013e3181a94af4. [DOI] [PubMed] [Google Scholar]
  • 101.Seo AN, Park TI, Jin Y, Sun PL, Kim H, Chang H, Chung JH. Novel EGFR mutation-specific antibodies for lung adenocarcinoma: highly specific but not sensitive detection of an E746_A750 deletion in exon 19 and an L858R mutation in exon 21 by immunohistochemistry. Lung Cancer. 2014;83:316–323. doi: 10.1016/j.lungcan.2013.12.008. [DOI] [PubMed] [Google Scholar]
  • 102.Soung YH, Lee JW, Kim SY, Seo SH, Park WS, Nam SW, Song SY, Han JH, Park CK, Lee JY, Yoo NJ, Lee SH. Mutational analysis of EGFR and K-RAS genes in lung adenocarcinomas. Virchows Arch. 2005;446:483–488. doi: 10.1007/s00428-005-1254-y. [DOI] [PubMed] [Google Scholar]
  • 103.Sun PL, Seol H, Lee HJ, Yoo SB, Kim H, Xu X, Jheon S, Lee CT, Lee JS, Chung JH. High incidence of EGFR mutations in Korean men smokers with no intratumoral heterogeneity of lung adenocarcinomas: correlation with histologic subtypes, EGFR/TTF-1 expressions, and clinical features. J Thorac Oncol. 2012;7:323–330. doi: 10.1097/JTO.0b013e3182381515. [DOI] [PubMed] [Google Scholar]
  • 104.Lim EH, Zhang SL, Li JL, Yap WS, Howe TC, Tan BP, Lee YS, Wong D, Khoo KL, Seto KY, Tan L, Agasthian T, Koong HN, Tam J, Tan C, Caleb M, Chang A, Ng A, Tan P. Using whole genome amplification (WGA) of low-volume biopsies to assess the prognostic role of EGFR, KRAS, p53, and CMET mutations in advanced-stage non-small cell lung cancer (NSCLC) J Thorac Oncol. 2009;4:12–21. doi: 10.1097/JTO.0b013e3181913e28. [DOI] [PubMed] [Google Scholar]
  • 105.Toh CK, Ahmad B, Soong R, Chuah KL, Tan SH, Hee SW, Leong SS, Tan EH, Lim WT. Correlation between epidermal growth factor receptor mutations and expression of female hormone receptors in East-Asian lung adenocarcinomas. J Thorac Oncol. 2010;5:17–22. doi: 10.1097/JTO.0b013e3181c0a602. [DOI] [PubMed] [Google Scholar]
  • 106.Gow CH, Chang YL, Hsu YC, Tsai MF, Wu CT, Yu CJ, Yang CH, Lee YC, Yang PC, Shih JY. Comparison of epidermal growth factor receptor mutations between primary and corresponding metastatic tumors in tyrosine kinase inhibitor-naive non-small-cell lung cancer. Ann Oncol. 2009;20:696–702. doi: 10.1093/annonc/mdn679. [DOI] [PubMed] [Google Scholar]
  • 107.Hsieh MH, Fang YF, Chang WC, Kuo HP, Lin SY, Liu HP, Liu CL, Chen HC, Ku YC, Chen YT, Chang YH, Chen YT, Hsi BL, Tsai SF, Huang SF. Complex mutation patterns of epidermal growth factor receptor gene associated with variable responses to gefitinib treatment in patients with non-small cell lung cancer. Lung Cancer. 2006;53:311–322. doi: 10.1016/j.lungcan.2006.06.005. [DOI] [PubMed] [Google Scholar]
  • 108.Chang YL, Wu CT, Lin SC, Hsiao CF, Jou YS, Lee YC. Clonality and prognostic implications of p53 and epidermal growth factor receptor somatic aberrations in multiple primary lung cancers. Clin Cancer Res. 2007;13:52–58. doi: 10.1158/1078-0432.CCR-06-1743. [DOI] [PubMed] [Google Scholar]
  • 109.Chang YL, Wu CT, Shih JY, Lee YC. Comparison of p53 and epidermal growth factor receptor gene status between primary tumors and lymph node metastases in non-small cell lung cancers. Ann Surg Oncol. 2011;18:543–550. doi: 10.1245/s10434-010-1295-6. [DOI] [PubMed] [Google Scholar]
  • 110.Lin CC, Hsu HH, Sun CT, Shih JY, Lin ZZ, Yu CJ, Chen GG, Hsin MK, Lam KC, Leung L, Yang CH, Mok T. Chemotherapy response in East Asian non-small cell lung cancer patients harboring wild-type or activating mutation of epidermal growth factor receptors. J Thorac Oncol. 2010;5:1424–1429. doi: 10.1097/JTO.0b013e3181e9db73. [DOI] [PubMed] [Google Scholar]
  • 111.Fong Y, Lin YS, Liou CP, Li CF, Tzeng CC. Chromosomal imbalances in lung adenocarcinomas with or without mutations in the epidermal growth factor receptor gene. Respirology. 2010;15:700–705. doi: 10.1111/j.1440-1843.2010.01746.x. [DOI] [PubMed] [Google Scholar]
  • 112.Wu CC, Hsu HY, Liu HP, Chang JW, Chen YT, Hsieh WY, Hsieh JJ, Hsieh MS, Chen YR, Huang SF. Reversed mutation rates of KRAS and EGFR genes in adenocarcinoma of the lung in Taiwan and their implications. Cancer. 2008;113:3199–3208. doi: 10.1002/cncr.23925. [DOI] [PubMed] [Google Scholar]
  • 113.Schmid K, Oehl N, Wrba F, Pirker R, Pirker C, Filipits M. EGFR/KRAS/BRAF mutations in primary lung adenocarcinomas and corresponding locoregional lymph node metastases. Clin Cancer Res. 2009;15:4554–4560. doi: 10.1158/1078-0432.CCR-09-0089. [DOI] [PubMed] [Google Scholar]
  • 114.Pesek M, Benesova L, Belsanova B, Mukensnabl P, Bruha F, Minarik M. Dominance of EGFR and insignificant KRAS mutations in prediction of tyrosine-kinase therapy for NSCLC patients stratified by tumor subtype and smoking status. Anticancer Res. 2009;29:2767–2773. [PubMed] [Google Scholar]
  • 115.Maki-Nevala S, Ronty M, Morel M, Gomez M, Dawson Z, Sarhadi VK, Telaranta-Keerie A, Knuuttila A, Knuutila S. Epidermal growth factor receptor mutations in 510 Finnish non--small-cell lung cancer patients. J Thorac Oncol. 2014;9:886–891. doi: 10.1097/JTO.0000000000000132. [DOI] [PubMed] [Google Scholar]
  • 116.Pallier K, Houllier AM, Le Corre D, Cazes A, Laurent-Puig P, Blons H. No somatic genetic change in the paxillin gene in nonsmallcell lung cancer. Mol Carcinog. 2009;48:581–585. doi: 10.1002/mc.20538. [DOI] [PubMed] [Google Scholar]
  • 117.Vallee A, Sagan C, Le Loupp AG, Bach K, Dejoie T, Denis MG. Detection of EGFR gene mutations in non-small cell lung cancer: lessons from a single-institution routine analysis of 1,403 tumor samples. Int J Oncol. 2013;43:1045–1051. doi: 10.3892/ijo.2013.2056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 118.Boch C, Kollmeier J, Roth A, Stephan-Falkenau S, Misch D, Gruning W, Bauer TT, Mairinger T. The frequency of EGFR and KRAS mutations in non-small cell lung cancer (NSCLC): routine screening data for central Europe from a cohort study. BMJ Open. 2013:3. doi: 10.1136/bmjopen-2013-002560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 119.Gahr S, Stoehr R, Geissinger E, Ficker JH, Brueckl WM, Gschwendtner A, Gattenloehner S, Fuchs FS, Schulz C, Rieker RJ, Hartmann A, Ruemmele P, Dietmaier W. EGFR mutational status in a large series of Caucasian European NSCLC patients: data from daily practice. Br J Cancer. 2013;109:1821–1828. doi: 10.1038/bjc.2013.511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 120.Reinmuth N, Jauch A, Xu EC, Muley T, Granzow M, Hoffmann H, Dienemann H, Herpel E, Schnabel PA, Herth FJ, Gottschling S, Lahm H, Steins M, Thomas M, Meister M. Correlation of EGFR mutations with chromosomal alterations and expression of EGFR, ErbB3 and VEGF in tumor samples of lung adenocarcinoma patients. Lung Cancer. 2008;62:193–201. doi: 10.1016/j.lungcan.2008.03.011. [DOI] [PubMed] [Google Scholar]
  • 121.Schittenhelm MM, Kollmannsberger C, Oechsle K, Harlow A, Morich J, Honecker F, Kurek R, Störkel S, Kanz L, Corless CL, Wong KK, Bokemeyer C, Heinrich MC. Molecular determinants of response to matuzumab in combination with paclitaxel for patients with advanced non-small cell lung cancer. Mol Cancer Ther. 2009;8:481–489. doi: 10.1158/1535-7163.MCT-08-1068. [DOI] [PubMed] [Google Scholar]
  • 122.Schmid-Bindert G, Wang Y, Jiang H, Sun H, Henzler T, Wang H, Pilz LR, Ren S, Zhou C. EBUS-TBNA provides highest RNA yield for multiple biomarker testing from routinely obtained small biopsies in non-small cell lung cancer patients - a comparative study of three different minimal invasive sampling methods. PLoS One. 2013;8:e77948. doi: 10.1371/journal.pone.0077948. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 123.Wiesweg M, Ting S, Reis H, Worm K, Kasper S, Tewes M, Welt A, Richly H, Meiler J, Bauer S, Hense J, Gauler TC, Kohler J, Eberhardt WE, Darwiche K, Freitag L, Stamatis G, Breitenbucher F, Wohlschlaeger J, Theegarten D, Derks C, Cortes-Incio D, Linden G, Skottky S, Lutkes P, Dechene A, Paul A, Markus P, Schmid KW, Schuler M. Feasibility of preemptive biomarker profiling for personalised early clinical drug development at a Comprehensive Cancer Center. Eur J Cancer. 2013;49:3076–3082. doi: 10.1016/j.ejca.2013.06.014. [DOI] [PubMed] [Google Scholar]
  • 124.Zimmer S, Kahl P, Buhl TM, Steiner S, Wardelmann E, Merkelbach-Bruse S, Buettner R, Heukamp LC. Epidermal growth factor receptor mutations in non-small cell lung cancer influence downstream Akt, MAPK and Stat3 signaling. J Cancer Res Clin Oncol. 2009;135:723–730. doi: 10.1007/s00432-008-0509-9. [DOI] [PubMed] [Google Scholar]
  • 125.Kalikaki A, Koutsopoulos A, Trypaki M, Souglakos J, Stathopoulos E, Georgoulias V, Mavroudis D, Voutsina A. Comparison of EGFR and K-RAS gene status between primary tumours and corresponding metastases in NSCLC. Br J Cancer. 2008;99:923–929. doi: 10.1038/sj.bjc.6604629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 126.Kalikaki A, Koutsopoulos A, Hatzidaki D, Trypaki M, Kontopodis E, Stathopoulos E, Mavroudis D, Georgoulias V, Voutsina A. Clinical outcome of patients with non-small cell lung cancer receiving front-line chemotherapy according to EGFR and K-RAS mutation status. Lung Cancer. 2010;69:110–115. doi: 10.1016/j.lungcan.2009.09.010. [DOI] [PubMed] [Google Scholar]
  • 127.Boldrini L, Ali G, Gisfredi S, Ursino S, Baldini E, Melfi F, Lucchi M, Comin CE, Maddau C, Tibaldi C, Camacci T, Servadio A, Mussi A, Fontanini G. Epidermal growth factor receptor and K-RAS mutations in 411 lung adenocarcinoma: a population-based prospective study. Oncol Rep. 2009;22:683–691. doi: 10.3892/or_00000488. [DOI] [PubMed] [Google Scholar]
  • 128.Bozzetti C, Negri FV, Azzoni C, Naldi N, Nizzoli R, Bortesi B, Zobbi V, Bottarelli L, Tiseo M, Silini EM, Ardizzoni A. Epidermal growth factor receptor and Kras gene expression: reliability of mutational analysis on cytological samples. Diagn Cytopathol. 2013;41:595–598. doi: 10.1002/dc.22905. [DOI] [PubMed] [Google Scholar]
  • 129.Cappuzzo F, Marchetti A, Skokan M, Rossi E, Gajapathy S, Felicioni L, Del Grammastro M, Sciarrotta MG, Buttitta F, Incarbone M, Toschi L, Finocchiaro G, Destro A, Terracciano L, Roncalli M, Alloisio M, Santoro A, Varella-Garcia M. Increased MET gene copy number negatively affects survival of surgically resected non-small-cell lung cancer patients. J. Clin. Oncol. 2009;27:1667–1674. doi: 10.1200/JCO.2008.19.1635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 130.Ludovini V, Bianconi F, Pistola L, Chiari R, Minotti V, Colella R, Giuffrida D, Tofanetti FR, Siggillino A, Flacco A, Baldelli E, Iacono D, Mameli MG, Cavaliere A, Crino L. Phosphoinositide-3-kinase catalytic alpha and KRAS mutations are important predictors of resistance to therapy with epidermal growth factor receptor tyrosine kinase inhibitors in patients with advanced non-small cell lung cancer. J Thorac Oncol. 2011;6:707–715. doi: 10.1097/JTO.0b013e31820a3a6b. [DOI] [PubMed] [Google Scholar]
  • 131.Marchetti A, Martella C, Felicioni L, Barassi F, Salvatore S, Chella A, Camplese PP, Iarussi T, Mucilli F, Mezzetti A, Cuccurullo F, Sacco R, Buttitta F. EGFR mutations in non-small-cell lung cancer: analysis of a large series of cases and development of a rapid and sensitive method for diagnostic screening with potential implications on pharmacologic treatment. J. Clin. Oncol. 2005;23:857–865. doi: 10.1200/JCO.2005.08.043. [DOI] [PubMed] [Google Scholar]
  • 132.Marchetti A, Felicioni L, Malatesta S, Grazia Sciarrotta M, Guetti L, Chella A, Viola P, Pullara C, Mucilli F, Buttitta F. Clinical features and outcome of patients with non-small-cell lung cancer harboring BRAF mutations. J. Clin. Oncol. 2011;29:3574–3579. doi: 10.1200/JCO.2011.35.9638. [DOI] [PubMed] [Google Scholar]
  • 133.Ragusa M, Vannucci J, Ludovini V, Bianconi F, Treggiari S, Tofanetti FR, Flacco A, Colella R, Sidoni A, Crino L, Puma F. Impact of epidermal growth factor receptor and KRAS mutations on clinical outcome in resected non-small cell lung cancer patients. Am J Clin Oncol. 2014;37:343–349. doi: 10.1097/COC.0b013e31827a7e7a. [DOI] [PubMed] [Google Scholar]
  • 134.Sartori G, Cavazza A, Sgambato A, Marchioni A, Barbieri F, Longo L, Bavieri M, Murer B, Meschiari E, Tamberi S, Cadioli A, Luppi F, Migaldi M, Rossi G. EGFR and K-ras mutations along the spectrum of pulmonary epithelial tumors of the lung and elaboration of a combined clinicopathologic and molecular scoring system to predict clinical responsiveness to EGFR inhibitors. Am J Clin Pathol. 2009;131:478–489. doi: 10.1309/AJCPH0TRMPXVZW2F. [DOI] [PubMed] [Google Scholar]
  • 135.Ulivi P, Romagnoli M, Chiadini E, Casoni GL, Capelli L, Gurioli C, Zoli W, Saragoni L, Dubini A, Tesei A, Amadori D, Poletti V. Assessment of EGFR and K-ras mutations in fixed and fresh specimens from transesophageal ultrasoundguided fine needle aspiration in non-small cell lung cancer patients. Int J Oncol. 2012;41:147–152. doi: 10.3892/ijo.2012.1432. [DOI] [PubMed] [Google Scholar]
  • 136.Vaguliene N, Zemaitis M, Sarauskas V, Vitkauskiene A, Miliauskas S. The role of mutation status of the epidermal growth factor receptor gene in advanced non-small cell lung cancer. Medicina (Kaunas) 2012;48:175–181. [PubMed] [Google Scholar]
  • 137.Vincenten J, Smit EF, Vos W, Grunberg K, Postmus PE, Heideman DA, Snijders PJ, Meijer G, Kuik J, Witte BI, Thunnissen E. Negative NKX2-1 (TTF-1) as temporary surrogate marker for treatment selection during EGFR-mutation analysis in patients with non-small-cell lung cancer. J Thorac Oncol. 2012;7:1522–1527. doi: 10.1097/JTO.0b013e3182635a91. [DOI] [PubMed] [Google Scholar]
  • 138.Helland A, Skaug HM, Kleinberg L, Iversen ML, Rud AK, Fleischer T, Sagerup C, Solberg S, Jorgensen L, Ariansen S, Brustugun OT. EGFR gene alterations in a Norwegian cohort of lung cancer patients selected for surgery. J Thorac Oncol. 2011;6:947–950. doi: 10.1097/JTO.0b013e31820db209. [DOI] [PubMed] [Google Scholar]
  • 139.Kamila WK, Michal S, Pawel K, Paulina J, Tomasz K, Bozena J, Radoslaw M, Justyna S, Marek S, Trojanowski T, Janusz M, Joanna CW. EGFR activating mutations detected by different PCR techniques in Caucasian NSCLC patients with CNS metastases: short report. Clin Exp Metastasis. 2013;30:1063–1071. doi: 10.1007/s10585-013-9603-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 140.Krawczyk P, Nicos M, Ramlau R, Powrozek T, Wojas-Krawczyk K, Sura S, Jarosz B, Szumilo J, Warda E, Mazurkiewicz T, Sawicki M, Milanowski J. The incidence of EGFR-activating mutations in bone metastases of lung adenocarcinoma. Pathol Oncol Res. 2014;20:107–112. doi: 10.1007/s12253-013-9667-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 141.Szumera-Cieckiewicz A, Olszewski WT, Tysarowski A, Kowalski DM, Glogowski M, Krzakowski M, Siedlecki JA, Wagrodzki M, Prochorec-Sobieszek M. EGFR mutation testing on cytological and histological samples in non-small cell lung cancer: a Polish, single institution study and systematic review of European incidence. Int J Clin Exp Pathol. 2013;6:2800–2812. [PMC free article] [PubMed] [Google Scholar]
  • 142.Castro AS, Parente B, Goncalves I, Antunes A, Barroso A, Conde S, Neves S, Machado JC. Epidermal growth factor receptor mutation study for 5 years, in a population of patients with non-small cell lung cancer. Rev Port Pneumol. 2013;19:7–12. doi: 10.1016/j.rppneu.2012.08.002. [DOI] [PubMed] [Google Scholar]
  • 143.Moiseyenko VM, Procenko SA, Levchenko EV, Barchuk AS, Moiseyenko FV, Iyevleva AG, Mitiushkina NV, Togo AV, Semionov II, Ivantsov AO, Matsko DE, Imyanitov EN. High efficacy of first-line gefitinib in non-Asian patients with EGFR-mutated lung adenocarcinoma. Onkologie. 2010;33:231–238. doi: 10.1159/000302729. [DOI] [PubMed] [Google Scholar]
  • 144.Mounawar M, Mukeria A, Le Calvez F, Hung RJ, Renard H, Cortot A, Bollart C, Zaridze D, Brennan P, Boffetta P, Brambilla E, Hainaut P. Patterns of EGFR, HER2, TP53, and KRAS mutations of p14arf expression in non-small cell lung cancers in relation to smoking history. Cancer Res. 2007;67:5667–5672. doi: 10.1158/0008-5472.CAN-06-4229. [DOI] [PubMed] [Google Scholar]
  • 145.Hlinkova K, Babal P, Berzinec P, Majer I, Mikle-Barathova Z, Piackova B, Ilencikova D. Evaluation of 2-year experience with EGFR mutation analysis of small diagnostic samples. Diagn Mol Pathol. 2013;22:70–75. doi: 10.1097/PDM.0b013e31827e6984. [DOI] [PubMed] [Google Scholar]
  • 146.Rosell R, Moran T, Queralt C, Porta R, Cardenal F, Camps C, Majem M, Lopez-Vivanco G, Isla D, Provencio M, Insa A, Massuti B, Gonzalez-Larriba JL, Paz-Ares L, Bover I, Garcia-Campelo R, Moreno MA, Catot S, Rolfo C, Reguart N, Palmero R, Sánchez JM, Bastus R, Mayo C, Bertran-Alamillo J, Molina MA, Sanchez JJ, Taron M Spanish Lung Cancer Group. Screening for epidermal growth factor receptor mutations in lung cancer. N Engl J Med. 2009;361:958–967. doi: 10.1056/NEJMoa0904554. [DOI] [PubMed] [Google Scholar]
  • 147.Isaksson S, Bendahl PO, Salomonsson A, Jonsson M, Haglund M, Gaber A, Jirstrom K, Jonsson P, Borg A, Johansson L, Staaf J, Planck M. Detecting EGFR alterations in clinical specimens-pitfalls and necessities. Virchows Arch. 2013;463:755–764. doi: 10.1007/s00428-013-1489-y. [DOI] [PubMed] [Google Scholar]
  • 148.Cetin Z, Ozbilim G, Erdogan A, Luleci G, Karauzum SB. Evaluation of PTEN and Mcl-1 expressions in NSCLC expressing wild-type or mutated EGFR. Med Oncol. 2010;27:853–860. doi: 10.1007/s12032-009-9296-7. [DOI] [PubMed] [Google Scholar]
  • 149.Unal OU, Oztop I, Calibasi G, Baskin Y, Koca D, Demir N, Akman T, Ellidokuz H, Yilmaz AU. Relationship between epidermal growth factor receptor gene mutations and clinicopathological features in patients with non-small cell lung cancer in western Turkey. Asian Pac J Cancer Prev. 2013;14:3705–3709. doi: 10.7314/apjcp.2013.14.6.3705. [DOI] [PubMed] [Google Scholar]
  • 150.Santis G, Angell R, Nickless G, Quinn A, Herbert A, Cane P, Spicer J, Breen R, McLean E, Tobal K. Screening for EGFR and KRAS mutations in endobronchial ultrasound derived transbronchial needle aspirates in non-small cell lung cancer using COLD-PCR. PLoS One. 2011;6:e25191. doi: 10.1371/journal.pone.0025191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 151.Mariano C, Bosdet I, Karsan A, Ionescu D, Murray N, Laskin JJ, Zhai Y, Melosky B, Sun S, Ho C. A population-based review of the feasibility of platinum-based combination chemotherapy after tyrosine kinase inhibition in EGFR mutation positive non-small cell lung cancer patients with advanced disease. Lung Cancer. 2014;83:73–77. doi: 10.1016/j.lungcan.2013.10.007. [DOI] [PubMed] [Google Scholar]
  • 152.Tsao MS, Sakurada A, Ding K, Aviel-Ronen S, Ludkovski O, Liu N, Le Maître A, Gandara D, Johnson DH, Rigas JR, Seymour L, Shepherd FA. Prognostic and predictive value of epidermal growth factor receptor tyrosine kinase domain mutation status and gene copy number for adjuvant chemotherapy in nonsmall cell lung cancer. J Thorac Oncol. 2011;6:139–147. doi: 10.1097/JTO.0b013e3181fd83a4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 153.Brannan JM, Dong W, Prudkin L, Behrens C, Lotan R, Bekele BN, Wistuba I, Johnson FM. Expression of the receptor tyrosine kinase EphA2 is increased in smokers and predicts poor survival in non-small cell lung cancer. Clin Cancer Res. 2009;15:4423–4430. doi: 10.1158/1078-0432.CCR-09-0473. [DOI] [PubMed] [Google Scholar]
  • 154.Chitale D, Gong Y, Taylor BS, Broderick S, Brennan C, Somwar R, Golas B, Wang L, Motoi N, Szoke J, Reinersman JM, Major J, Sander C, Seshan VE, Zakowski MF, Rusch V, Pao W, Gerald W, Ladanyi M. An integrated genomic analysis of lung cancer reveals loss of DUSP4 in EGFR-mutant tumors. Oncogene. 2009;28:2773–2783. doi: 10.1038/onc.2009.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 155.D’Angelo SP, Janjigian YY, Ahye N, Riely GJ, Chaft JE, Sima CS, Shen R, Zheng J, Dycoco J, Kris MG, Zakowski MF, Ladanyi M, Rusch V, Azzoli CG. Distinct clinical course of EGFRmutant resected lung cancers: results of testing of 1118 surgical specimens and effects of adjuvant gefitinib and erlotinib. J Thorac Oncol. 2012;7:1815–1822. doi: 10.1097/JTO.0b013e31826bb7b2. [DOI] [PubMed] [Google Scholar]
  • 156.Gandara DR, Grimminger P, Mack PC, Lara PN Jr, Li T, Danenberg PV, Danenberg KD. Association of epidermal growth factor receptor activating mutations with low ERCC1 gene expression in non-small cell lung cancer. J Thorac Oncol. 2010;5:1933–1938. doi: 10.1097/JTO.0b013e3181fd418d. [DOI] [PubMed] [Google Scholar]
  • 157.Girard N, Sima CS, Jackman DM, Sequist LV, Chen H, Yang JC, Ji H, Waltman B, Rosell R, Taron M, Zakowski MF, Ladanyi M, Riely G, Pao W. Nomogram to predict the presence of EGFR activating mutation in lung adenocarcinoma. Eur Respir J. 2012;39:366–372. doi: 10.1183/09031936.00010111. [DOI] [PubMed] [Google Scholar]
  • 158.Hoque MO, Brait M, Rosenbaum E, Poeta ML, Pal P, Begum S, Dasgupta S, Carvalho AL, Ahrendt SA, Westra WH, Sidransky D. Genetic and epigenetic analysis of erbB signaling pathway genes in lung cancer. J Thorac Oncol. 2010;5:1887–1893. doi: 10.1097/JTO.0b013e3181f77a53. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 159.Munfus-McCray D, Harada S, Adams C, Askin F, Clark D, Gabrielson E, Li QK. EGFR and KRAS mutations in metastatic lung adenocarcinomas. Hum Pathol. 2011;42:1447–1453. doi: 10.1016/j.humpath.2010.12.011. [DOI] [PubMed] [Google Scholar]
  • 160.Paik PK, Arcila ME, Fara M, Sima CS, Miller VA, Kris MG, Ladanyi M, Riely GJ. Clinical characteristics of patients with lung adenocarcinomas harboring BRAF mutations. J. Clin. Oncol. 2011;29:2046–2051. doi: 10.1200/JCO.2010.33.1280. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 161.Paik PK, Johnson ML, D’Angelo SP, Sima CS, Ang D, Dogan S, Miller VA, Ladanyi M, Kris MG, Riely GJ. Driver mutations determine survival in smokers and never-smokers with stage IIIB/IV lung adenocarcinomas. Cancer. 2012;118:5840–5847. doi: 10.1002/cncr.27637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 162.Sequist LV, Joshi VA, Jänne PA, Muzikansky A, Fidias P, Meyerson M, Haber DA, Kucherlapati R, Johnson BE, Lynch TJ. Response to treatment and survival of patients with non-small cell lung cancer undergoing somatic EGFR mutation testing. Oncologist. 2007;12:90–98. doi: 10.1634/theoncologist.12-1-90. [DOI] [PubMed] [Google Scholar]
  • 163.Shibata T, Hanada S, Kokubu A, Matsuno Y, Asamura H, Ohta T, Sakamoto M, Hirohashi S. Gene expression profiling of epidermal growth factor receptor/KRAS pathway activation in lung adenocarcinoma. Cancer Sci. 2007;98:985–991. doi: 10.1111/j.1349-7006.2007.00483.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 164.Sun M, Behrens C, Feng L, Ozburn N, Tang X, Yin G, Komaki R, Varella-Garcia M, Hong WK, Aldape KD, Wistuba II. HER family receptor abnormalities in lung cancer brain metastases and corresponding primary tumors. Clin Cancer Res. 2009;15:4829–4837. doi: 10.1158/1078-0432.CCR-08-2921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 165.Tsao AS, Tang XM, Sabloff B, Xiao L, Shigematsu H, Roth J, Spitz M, Hong WK, Gazdar A, Wistuba I. Clinicopathologic characteristics of the EGFR gene mutation in non-small cell lung cancer. J Thorac Oncol. 2006;1:231–239. doi: 10.1016/s1556-0864(15)31573-2. [DOI] [PubMed] [Google Scholar]
  • 166.Reinersman JM, Johnson ML, Riely GJ, Chitale DA, Nicastri AD, Soff GA, Schwartz AG, Sima CS, Ayalew G, Lau C, Zakowski MF, Rusch VW, Ladanyi M, Kris MG. Frequency of EGFR and KRAS mutations in lung adenocarcinomas in African Americans. J Thorac Oncol. 2011;6:28–31. doi: 10.1097/JTO.0b013e3181fb4fe2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 167.Rahman S, Kondo N, Yoneda K, Takuwa T, Hashimoto M, Orui H, Okumura Y, Tanaka F, Kumamoto K, Mostafa MG, Chowdhury GM, Haque A, Hasegawa S. Frequency of epidermal growth factor receptor mutations in Bangladeshi patients with adenocarcinoma of the lung. Int J Clin Oncol. 2014;19:45–49. doi: 10.1007/s10147-012-0515-4. [DOI] [PubMed] [Google Scholar]
  • 168.Chougule A, Prabhash K, Noronha V, Joshi A, Thavamani A, Chandrani P, Upadhyay P, Utture S, Desai S, Jambhekar N, Dutt A. Frequency of EGFR mutations in 907 lung adenocarcioma patients of Indian ethnicity. PLoS One. 2013;8:e76164. doi: 10.1371/journal.pone.0076164. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 169.Doval DC, Azam S, Batra U, Choudhury KD, Talwar V, Gupta SK, Mehta A. Epidermal growth factor receptor mutation in lung adenocarcinoma in India: A single center study. J Carcinog. 2013;12:12. doi: 10.4103/1477-3163.114970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 170.Mehmood T, Rashid A, Usman S, Irfan M, Haider I, Rehman K. 5P EGFR Gene mutation in advanced non-small cell lung cancer. Lung Cancer. 2013;80:S2. [Google Scholar]
  • 171.Bacchi CE, Ciol H, Queiroga EM, Benine LC, Silva LH, Ojopi EB. Epidermal growth factor receptor and KRAS mutations in Brazilian lung cancer patients. Clinics (Sao Paulo) 2012;67:419–424. doi: 10.6061/clinics/2012(05)03. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 172.Carneiro JG, Couto PG, Bastos-Rodrigues L, Bicalho MA, Vidigal PV, Vilhena A, Amaral NF, Bale AE, Friedman E, De Marco L. Spectrum of somatic EGFR, KRAS, BRAF, PTEN mutations and TTF-1 expression in Brazilian lung cancer patients. Genet Res (Camb) 2014;96:e002. doi: 10.1017/S0016672314000032. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 173.Honma HN, Perroud MW Jr, Leme MS, Barbeiro AS, Saad BA, Morcillo AM, Vassallo J, Costa DB, Zambon L. EGFR activating mutations and their association with response to platinumdoublet chemotherapy in Brazilian non-small cell lung cancer patients. Target Oncol. 2014;9:389–94. doi: 10.1007/s11523-014-0314-0. [DOI] [PubMed] [Google Scholar]
  • 174.Cooper WA, Yu B, Yip PY, Ng CC, Lum T, Farzin M, Trent RJ, Mercorella B, Clarkson A, Kohonen-Corish MR, Horvath LG, Kench JG, McCaughan B, Gill AJ, O’Toole SA. EGFR mutant-specific immunohistochemistry has high specificity and sensitivity for detecting targeted activating EGFR mutations in lung adenocarcinoma. J Clin Pathol. 2013;66:744–748. doi: 10.1136/jclinpath-2013-201607. [DOI] [PubMed] [Google Scholar]
  • 175.Sriram KB, Tan ME, Savarimuthu SM, Wright CM, Relan V, Stockwell RE, Clarke BE, Duhig EE, Yang IA, Bowman RV, Fong KM. Screening for activating EGFR mutations in surgically resected nonsmall cell lung cancer. Eur Respir J. 2011;38:903–910. doi: 10.1183/09031936.00190110. [DOI] [PubMed] [Google Scholar]
  • 176.Webb S, Thomas M, Metcalf C, Segal A, Nowak AK, Bentel J, Millward M. EGFR mutation testing in NSCLC: Patterns of care and outcomes in Western Australia. Asia Pac J Clin Oncol. 2009;5:66–71. [Google Scholar]
  • 177.Errihani H, Inrhaoun H, Boukir A, Kettani F, Gamra L, Mestari A, Jabri L, Bensouda Y, Mrabti H, Elghissassi I. Frequency and type of epidermal growth factor receptor mutations in moroccan patients with lung adenocarcinoma. J Thorac Oncol. 2013;8:1212–1214. doi: 10.1097/JTO.0b013e31829f6b4a. [DOI] [PubMed] [Google Scholar]
  • 178.Gaughan EM, Cryer SK, Yeap BY, Jackman DM, Costa DB. Family history of lung cancer in never smokers with non-small-cell lung cancer and its association with tumors harboring EGFR mutations. Lung Cancer. 2013;79:193–197. doi: 10.1016/j.lungcan.2012.12.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 179.Sasaki H, Endo K, Konishi A, Takada M, Kawahara M, Iuchi K, Matsumura A, Okumura M, Tanaka H, Kawaguchi T, Shimizu T, Takeuchi H, Yano M, Fukai I, Fujii Y. EGFR mutation status in Japanese lung cancer patients: genotyping analysis using LightCycler. Clin Cancer Res. 2005;11:2924–2929. doi: 10.1158/1078-0432.CCR-04-1904. [DOI] [PubMed] [Google Scholar]
  • 180.Sequist LV, Joshi VA, Jänne PA, Muzikansky A, Fidias P, Meyerson M, Haber DA, Kucherlapati R, Johnson BE, Lynch TJ. Response to treatment and survival of patients with non-small cell lung cancer undergoing somatic EGFR mutation testing. Oncologist. 2007;12:90–98. doi: 10.1634/theoncologist.12-1-90. [DOI] [PubMed] [Google Scholar]
  • 181.Sun Y, Ren Y, Fang Z, Li C, Fang R, Gao B, Han X, Tian W, Pao W, Chen H, Ji H. Lung adenocarcinoma from East Asian never-smokers is a disease largely defined by targetable oncogenic mutant kinases. J. Clin. Oncol. 2010;28:4616–4620. doi: 10.1200/JCO.2010.29.6038. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

ajcr0005-2892-f3.pdf (212KB, pdf)

Articles from American Journal of Cancer Research are provided here courtesy of e-Century Publishing Corporation

RESOURCES