Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1993 May 1;90(9):4191–4195. doi: 10.1073/pnas.90.9.4191

Images of evolution: origin of spontaneous RNA replication waves.

J S McCaskill 1, G J Bauer 1
PMCID: PMC46472  PMID: 7683426

Abstract

Self-replicating molecules set up traveling concentration waves that propagate in an aqueous enzyme solution. The velocity of each wave provides an accurate (+/- 0.1%) noninvasive measure of fitness for the RNA species currently growing in its front. Evolution may be followed from changes in the front velocity, and these differ from wave to wave. Thousands of controlled evolution reactions in traveling waves have been monitored in parallel to obtain quantitative images of the stochastic process of natural selection. An RNA polymerase (RNA-dependent RNA nucleotidyltransferase, EC 2.7.7.6), extracted from bacteria infected by the Q beta RNA virus, catalyzes the replication. The traveling waves that arise spontaneously without added RNA provide a model system for major evolutionary change.

Full text

PDF
4193

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Batschelet E., Domingo E., Weissmann C. The proportion of revertant and mutant phage in a growing population, as a function of mutation and growth rate. Gene. 1976;1(1):27–32. doi: 10.1016/0378-1119(76)90004-4. [DOI] [PubMed] [Google Scholar]
  2. Bauer G. J., McCaskill J. S., Otten H. Traveling waves of in vitro evolving RNA. Proc Natl Acad Sci U S A. 1989 Oct;86(20):7937–7941. doi: 10.1073/pnas.86.20.7937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Biebricher C. K., Eigen M., Gardiner W. C., Jr Kinetics of RNA replication. Biochemistry. 1983 May 10;22(10):2544–2559. doi: 10.1021/bi00279a036. [DOI] [PubMed] [Google Scholar]
  4. Biebricher C. K., Eigen M., Gardiner W. C., Jr Kinetics of RNA replication: competition and selection among self-replicating RNA species. Biochemistry. 1985 Nov 5;24(23):6550–6560. doi: 10.1021/bi00344a037. [DOI] [PubMed] [Google Scholar]
  5. Biebricher C. K., Eigen M., Gardiner W. C., Jr Kinetics of RNA replication: plus-minus asymmetry and double-strand formation. Biochemistry. 1984 Jul 3;23(14):3186–3194. doi: 10.1021/bi00309a012. [DOI] [PubMed] [Google Scholar]
  6. Biebricher C. K., Eigen M., Luce R. Kinetic analysis of template-instructed and de novo RNA synthesis by Q beta replicase. J Mol Biol. 1981 Jun 5;148(4):391–410. doi: 10.1016/0022-2836(81)90183-2. [DOI] [PubMed] [Google Scholar]
  7. Biebricher C. K., Eigen M., Luce R. Kinetic analysis of template-instructed and de novo RNA synthesis by Q beta replicase. J Mol Biol. 1981 Jun 5;148(4):391–410. doi: 10.1016/0022-2836(81)90183-2. [DOI] [PubMed] [Google Scholar]
  8. Biebricher C. K., Eigen M., Luce R. Product analysis of RNA generated de novo by Q beta replicase. J Mol Biol. 1981 Jun 5;148(4):369–390. doi: 10.1016/0022-2836(81)90182-0. [DOI] [PubMed] [Google Scholar]
  9. Biebricher C. K., Eigen M., Luce R. Template-free RNA synthesis by Q beta replicase. Nature. 1986 May 1;321(6065):89–91. doi: 10.1038/321089a0. [DOI] [PubMed] [Google Scholar]
  10. Biebricher C. K. Quantitative analysis of mutation and selection in self-replicating RNA. Adv Space Res. 1992;12(4):191–197. doi: 10.1016/0273-1177(92)90172-t. [DOI] [PubMed] [Google Scholar]
  11. Blumenthal T., Carmichael G. G. RNA replication: function and structure of Qbeta-replicase. Annu Rev Biochem. 1979;48:525–548. doi: 10.1146/annurev.bi.48.070179.002521. [DOI] [PubMed] [Google Scholar]
  12. Chao L. Fitness of RNA virus decreased by Muller's ratchet. Nature. 1990 Nov 29;348(6300):454–455. doi: 10.1038/348454a0. [DOI] [PubMed] [Google Scholar]
  13. Chetverin A. B., Chetverina H. V., Munishkin A. V. On the nature of spontaneous RNA synthesis by Q beta replicase. J Mol Biol. 1991 Nov 5;222(1):3–9. doi: 10.1016/0022-2836(91)90729-p. [DOI] [PubMed] [Google Scholar]
  14. Domingo E., Sabo D., Taniguchi T., Weissmann C. Nucleotide sequence heterogeneity of an RNA phage population. Cell. 1978 Apr;13(4):735–744. doi: 10.1016/0092-8674(78)90223-4. [DOI] [PubMed] [Google Scholar]
  15. Eigen M. Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften. 1971 Oct;58(10):465–523. doi: 10.1007/BF00623322. [DOI] [PubMed] [Google Scholar]
  16. Hill D., Blumenthal T. Does Q beta replicase synthesize RNA in the absence of template? Nature. 1983 Jan 27;301(5898):350–352. doi: 10.1038/301350a0. [DOI] [PubMed] [Google Scholar]
  17. Konarska M. M., Sharp P. A. Structure of RNAs replicated by the DNA-dependent T7 RNA polymerase. Cell. 1990 Nov 2;63(3):609–618. doi: 10.1016/0092-8674(90)90456-o. [DOI] [PubMed] [Google Scholar]
  18. Le Pecq J. B. Use of ethidium bromide for separation and determination of nucleic acids of various conformational forms and measurement of their associated enzymes. Methods Biochem Anal. 1971;20:41–86. doi: 10.1002/9780470110393.ch2. [DOI] [PubMed] [Google Scholar]
  19. Mills D. R., Peterson R. L., Spiegelman S. An extracellular Darwinian experiment with a self-duplicating nucleic acid molecule. Proc Natl Acad Sci U S A. 1967 Jul;58(1):217–224. doi: 10.1073/pnas.58.1.217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mitsunari Y., Hori K. Qbeta replicase-associated, polycytidylic acid-dependent polyguanylic acid polymerase. I. Characterization of the reaction. J Biochem. 1973 Aug;74(2):263–271. [PubMed] [Google Scholar]
  21. Niesert U., Harnasch D., Bresch C. Origin of life between Scylla and Charybdis. J Mol Evol. 1981;17(6):348–353. doi: 10.1007/BF01734356. [DOI] [PubMed] [Google Scholar]
  22. Nowak M. A., May R. M., Anderson R. M. The evolutionary dynamics of HIV-1 quasispecies and the development of immunodeficiency disease. AIDS. 1990 Nov;4(11):1095–1103. doi: 10.1097/00002030-199011000-00007. [DOI] [PubMed] [Google Scholar]
  23. Sumper M., Luce R. Evidence for de novo production of self-replicating and environmentally adapted RNA structures by bacteriophage Qbeta replicase. Proc Natl Acad Sci U S A. 1975 Jan;72(1):162–166. doi: 10.1073/pnas.72.1.162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. WATSON J. D., CRICK F. H. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature. 1953 Apr 25;171(4356):737–738. doi: 10.1038/171737a0. [DOI] [PubMed] [Google Scholar]
  25. Weissmann C., Billeter M. A., Goodman H. M., Hindley J., Weber H. Structure and function of phage RNA. Annu Rev Biochem. 1973;42:303–328. doi: 10.1146/annurev.bi.42.070173.001511. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES