Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Sep 12;71(Pt 10):o703–o704. doi: 10.1107/S2056989015016096

Crystal structure of [4-(chloro­meth­yl)phen­yl](4-hy­droxy­piperidin-1-yl)methanone

B K Revathi a, D Reuben Jonathan b, K Kalai Sevi c, K Dhanalakshmi d, G Usha a,*
PMCID: PMC4647401  PMID: 26594432

Abstract

The title compound, C13H16ClNO2, crystallized with two independent mol­ecules in the asymmetric unit (A and B). The piperidinol ring in mol­ecule B is disordered over two positions with a site occupancy ratio of 0.667 (5):0.333 (5). In both mol­ecules these rings have a chair conformation, including the minor component in mol­ecule B. Their mean planes are inclined to the benzene ring by 45.57 (13)° in mol­ecule A, and by 50.5 (4)° for the major component of the piperidine ring in mol­ecule B. In the crystal, the individual mol­ecules are linked by O—H⋯O hydrogen bonds, forming chains of A and B mol­ecules along the [100] direction. The chains are inter­linked by C—H⋯O hydrogen bonds, forming ribbons.

Keywords: crystal structure, piperidine derivative, hydrogen bonding

Related literature  

For the synthesis see: Revathi et al. (2015). For the biological activity of piperidine derivatives, see: Daly et al. (1986); Fodor et al. (1985); Campfield et al. (1995); Kozikowski et al. (1998); Brau et al. (2000); Bolzani et al. (1995); Gulluoglu et al. (2007). For related structures see: Revathi et al. (2015); Prathebha et al. (2015).graphic file with name e-71-0o703-scheme1.jpg

Experimental  

Crystal data  

  • C13H16ClNO2

  • M r = 253.72

  • Triclinic, Inline graphic

  • a = 8.4131 (3) Å

  • b = 9.6211 (4) Å

  • c = 15.6780 (6) Å

  • α = 80.917 (3)°

  • β = 89.240 (2)°

  • γ = 88.395 (2)°

  • V = 1252.57 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 293 K

  • 0.35 × 0.30 × 0.25 mm

Data collection  

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004) T min = 0.902, T max = 0.943

  • 28447 measured reflections

  • 4415 independent reflections

  • 3411 reflections with I > 2σ(I)

  • R int = 0.027

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.128

  • S = 1.05

  • 4415 reflections

  • 371 parameters

  • 111 restraints

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.62 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Bruno et al., 2002); software used to prepare material for publication: SHELXL2014.

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989015016096/bg2567sup1.cif

e-71-0o703-sup1.cif (1.1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015016096/bg2567Isup2.hkl

e-71-0o703-Isup2.hkl (351.4KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015016096/bg2567Isup3.cml

. DOI: 10.1107/S2056989015016096/bg2567fig1.tif

The mol­ecular structure of the title compound (left: mol­ecula A; right: mol­ecule B), with displacement ellipsoids drawn at the 30% probability level.

. DOI: 10.1107/S2056989015016096/bg2567fig2.tif

The packing of the mol­ecules in the crystal structure. The dashed lines indicate the hydrogen bonds.

CCDC reference: 1421009

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
O2H2AO1i 0.82 2.18 2.789(2) 132
O4H4O3ii 0.82 2.13 2.793(3) 138
C11H11BO3iii 0.97 2.60 3.522(3) 160
C26H26AO2iv 0.97 2.59 3.494(4) 154

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The authors thank the DST–FIST, Central Instrumentation Facility, Queen Mary’s College, Chennai-4, for the computing facility and the SAIF, IIT, Madras, for the X-ray data-collection facility.

supplementary crystallographic information

S1. Comment

Many piperidine containing compounds possess remarkable biological and medicinal properties (Daly et al., (1986); Fodor et al., (1985)). Among their remarkable properties, they show appreciable effect on plasma glucose level (Campfield et al., (1995)), insulin normalization, therapeutics on cocaine abuse (Kozikowski et al., (1998)). Piperidine also participates in amny local anesthetics, such as mepivacaine, ropivacaine, and bupivacaine, extensively used in clinical practice (Brau et al., (2000); Bolzani et al., (1995)). Piperidine derivatives are found to exhibit pharmacological activity and form a vital part of the molecular structures of important drugs such as raloxifene and minoxidil. Selective inhibition of a number of enzymes has rendered piperidine alkaloids as important paraphernalia in the study of biochemical pathways (Gulluoglu et al., (2007).

The title compound, C13H16ClNO2, (I), crystallizes with two molecules in the asymmetric unit: A ( Fig1, left) and B (Fig 1, right) . Bond lengths and angles are comparable with literature values. C—N distances of the piperdine ring in molecule A C8—C12/N1 & in molecule B C21—C25/N2, are in the range 1.459 (3)- 1.462 (3) Å and are in good agreement with values of a similar reported structure (Revathi et al., (2015)). The C=O distances in molecules A & B are [1.235 (3) and 1.233 (3) Å], respectively, and is comparable with the previously reported value(Prathebha et al., (2015). In the molecule A, the dihedral angle between piperdine ring and the phenyl ring 47.22 (1)°, indicates the bisectional orientation of the phenylring. The bond angles around the N1 and N2 atoms [358.85 (2)° and 359.47 (2)°, respectively], shows sp2 hybridization of the atoms. The piperidine ring of the molecule A, adopts a chair conformation with puckering parameters of q2 = 0.019 (2) Å, φ2 = -58.74° q3 = -0.567 (3) Å, QT= 0.567 (3) Å and θ2 = 178.03 (2)°.

In the crystal packing the molecules form chains running along the diagonal of 'bc' plane through O—H···O type hydrogen bonds. These chains are further inter linked through C—H···O type hydrogen bonds to form molecular ribbons (Fig. 2).

S2. Experimental

The title compound was synthesized following a publish procedure (Revathi et al., (2015)). In a 250 ml roundbottomed flask 120 ml of ethylmethylketone was added to 4-hydroxypiperdine (0.02 mol) and stirred at room temperature. After 5 min triethylamine (0.04 mol) was added and the mixture was stirred for 15 min. Then 4-chloromethyl benzoylchloride(0.04 mol) was added and the reaction mixture was stirred at room temperature for ca 2 h. A white precipitate of triethylammoniumchloride was formed. It was filtered and the filtrate was evaporated to give the crude product. It was recrystallized twice from ethylmethylketone (yield: 82%) giving colourless block-like crystals of the title compound.

S3. Refinement

H atoms were positioned geometrically and treated as riding on their parent atoms and refined with, C—H distance of 0.93–0.98 Å, O—H distance of 0.82 Å with Uiso(H)= 1.5 Ueq(c-methyl),Uiso(H)= 1.5 Ueq(O) and Uiso(H)= 1.2Ueq(C) for other H atom. The piperidinol ring in one of the molecules is disordered over two positions with site occupancies in the ratio 67:33. The disorder was resolved by successive Fourier electron density maps and least squares refinements. Sum of the occupancies of the disordered components were restrained as 1 during refinement. The bond distances in the disordered groups were restrained using SADI or DFIX with an effective standard deviation of 0.01 Å and 0.02 Å respectively, wherever necessary. Rigid group restraint(RIGU) with e.s.d.'s 0.002 Å and 0.004 Å was also applied to get satisfactory model of the disorder.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound (left: molecula A; right: molecule B), with displacement ellipsoids drawn at the 30% probability level.

Fig. 2.

Fig. 2.

The packing of the molecules in the crystal structure. The dashed lines indicate the hydrogen bonds.

Crystal data

C13H16ClNO2 Z = 4
Mr = 253.72 F(000) = 536
Triclinic, P1 Dx = 1.345 Mg m3
a = 8.4131 (3) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.6211 (4) Å Cell parameters from 9919 reflections
c = 15.6780 (6) Å θ = 2.3–28.1°
α = 80.917 (3)° µ = 0.29 mm1
β = 89.240 (2)° T = 293 K
γ = 88.395 (2)° Block, colourless
V = 1252.57 (8) Å3 0.35 × 0.30 × 0.25 mm

Data collection

Bruker Kappa APEXII CCD diffractometer 4415 independent reflections
Radiation source: fine-focus sealed tube 3411 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.027
ω and φ scan θmax = 25.0°, θmin = 1.3°
Absorption correction: multi-scan (SADABS; Bruker, 2004) h = −10→10
Tmin = 0.902, Tmax = 0.943 k = −11→11
28447 measured reflections l = −18→18

Refinement

Refinement on F2 111 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045 H-atom parameters constrained
wR(F2) = 0.128 w = 1/[σ2(Fo2) + (0.0477P)2 + 1.0906P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max = 0.001
4415 reflections Δρmax = 0.45 e Å3
371 parameters Δρmin = −0.61 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 1.1123 (3) 0.3281 (3) −0.11147 (15) 0.0386 (5)
C2 1.0000 (3) 0.2251 (3) −0.10479 (15) 0.0413 (6)
H2 0.9657 0.1937 −0.1544 0.050*
C3 0.9381 (3) 0.1683 (3) −0.02565 (16) 0.0408 (6)
H3 0.8600 0.1011 −0.0223 0.049*
C4 0.9916 (2) 0.2108 (2) 0.04902 (15) 0.0347 (5)
C5 1.1051 (3) 0.3129 (3) 0.04244 (16) 0.0409 (6)
H5 1.1425 0.3421 0.0921 0.049*
C6 1.1633 (3) 0.3716 (3) −0.03693 (16) 0.0449 (6)
H6 1.2381 0.4416 −0.0405 0.054*
C7 0.9414 (3) 0.1401 (2) 0.13670 (15) 0.0369 (5)
C8 0.6599 (3) 0.2173 (3) 0.10907 (17) 0.0449 (6)
H8A 0.7011 0.2648 0.0544 0.054*
H8B 0.6232 0.2885 0.1427 0.054*
C9 0.5227 (3) 0.1276 (3) 0.09289 (17) 0.0480 (6)
H9A 0.5571 0.0624 0.0546 0.058*
H9B 0.4377 0.1872 0.0647 0.058*
C10 0.4611 (3) 0.0460 (3) 0.17647 (17) 0.0448 (6)
H10 0.4214 0.1130 0.2133 0.054*
C11 0.5957 (3) −0.0414 (3) 0.22218 (19) 0.0545 (7)
H11A 0.6322 −0.1113 0.1876 0.065*
H11B 0.5578 −0.0904 0.2772 0.065*
C12 0.7328 (3) 0.0503 (3) 0.23722 (16) 0.0538 (7)
H12A 0.6993 0.1144 0.2763 0.065*
H12B 0.8201 −0.0084 0.2637 0.065*
C13 1.1795 (3) 0.3886 (3) −0.19750 (17) 0.0512 (7)
H13A 1.1600 0.3256 −0.2385 0.061*
H13B 1.2937 0.3963 −0.1928 0.061*
C14 0.3857 (3) 0.4916 (3) 0.28225 (15) 0.0401 (6)
C15 0.3397 (3) 0.3530 (3) 0.30142 (16) 0.0449 (6)
H15 0.2663 0.3191 0.2665 0.054*
C16 0.4011 (3) 0.2651 (3) 0.37143 (16) 0.0423 (6)
H16 0.3673 0.1728 0.3841 0.051*
C17 0.5127 (3) 0.3125 (2) 0.42329 (14) 0.0348 (5)
C18 0.5592 (3) 0.4505 (3) 0.40463 (15) 0.0412 (6)
H18 0.6343 0.4836 0.4390 0.049*
C19 0.4949 (3) 0.5397 (3) 0.33533 (16) 0.0418 (6)
H19 0.5252 0.6330 0.3242 0.050*
C20 0.5672 (3) 0.2185 (3) 0.50338 (15) 0.0376 (5)
C26 0.3178 (3) 0.5885 (3) 0.20677 (17) 0.0529 (7)
H26A 0.3322 0.6854 0.2146 0.063*
H26B 0.2045 0.5738 0.2036 0.063*
O1 1.04414 (19) 0.0877 (2) 0.18842 (11) 0.0515 (5)
N1 0.7862 (2) 0.1306 (2) 0.15550 (12) 0.0401 (5)
O2 0.3366 (2) −0.0447 (2) 0.16381 (16) 0.0681 (6)
H2A 0.2626 0.0017 0.1392 0.102*
O3 0.4671 (2) 0.1695 (2) 0.55717 (12) 0.0556 (5)
Cl1 1.09363 (11) 0.55854 (9) −0.23667 (5) 0.0747 (3)
Cl2 0.41251 (10) 0.55824 (10) 0.10800 (5) 0.0706 (3)
C21 0.8443 (13) 0.2288 (15) 0.4478 (7) 0.0369 (19) 0.667 (5)
H21A 0.8004 0.2904 0.3983 0.044* 0.667 (5)
H21B 0.8764 0.1400 0.4299 0.044* 0.667 (5)
C22 0.9860 (15) 0.2956 (12) 0.4818 (9) 0.044 (2) 0.667 (5)
H22A 1.0703 0.3027 0.4386 0.053* 0.667 (5)
H22B 0.9558 0.3904 0.4907 0.053* 0.667 (5)
C23 1.0491 (9) 0.2147 (8) 0.5655 (5) 0.0479 (19) 0.667 (5)
H23 1.0836 0.1191 0.5582 0.057* 0.667 (5)
C24 0.9138 (13) 0.2112 (15) 0.6311 (9) 0.049 (2) 0.667 (5)
H24A 0.9507 0.1668 0.6875 0.059* 0.667 (5)
H24B 0.8774 0.3064 0.6354 0.059* 0.667 (5)
C25 0.7790 (15) 0.1296 (10) 0.6030 (5) 0.043 (2) 0.667 (5)
H25A 0.8151 0.0347 0.5977 0.052* 0.667 (5)
H25B 0.6932 0.1240 0.6452 0.052* 0.667 (5)
O4 1.1723 (3) 0.2855 (3) 0.5966 (2) 0.0623 (11) 0.667 (5)
H4 1.2493 0.2861 0.5639 0.093* 0.667 (5)
N2 0.7232 (8) 0.2047 (16) 0.5184 (5) 0.034 (2) 0.667 (5)
C21' 0.850 (3) 0.210 (3) 0.4530 (15) 0.042 (5) 0.333 (5)
H21C 0.8069 0.2460 0.3966 0.051* 0.333 (5)
H21D 0.9095 0.1236 0.4483 0.051* 0.333 (5)
C22' 0.967 (3) 0.318 (3) 0.4775 (18) 0.040 (4) 0.333 (5)
H22C 1.0482 0.3387 0.4333 0.048* 0.333 (5)
H22D 0.9105 0.4054 0.4843 0.048* 0.333 (5)
C23' 1.0410 (17) 0.2493 (16) 0.5636 (10) 0.044 (3) 0.333 (5)
H23' 1.1000 0.3196 0.5883 0.053* 0.333 (5)
C24' 0.915 (3) 0.184 (3) 0.6302 (19) 0.044 (4) 0.333 (5)
H24C 0.9685 0.1185 0.6751 0.053* 0.333 (5)
H24D 0.8646 0.2576 0.6571 0.053* 0.333 (5)
C25' 0.787 (3) 0.105 (2) 0.5893 (10) 0.036 (3) 0.333 (5)
H25C 0.8326 0.0158 0.5781 0.043* 0.333 (5)
H25D 0.7011 0.0843 0.6307 0.043* 0.333 (5)
O4' 1.1380 (7) 0.1335 (6) 0.5593 (4) 0.0532 (19) 0.333 (5)
H4' 1.1397 0.1163 0.5097 0.080* 0.333 (5)
N2' 0.7230 (17) 0.178 (3) 0.5116 (12) 0.034 (4) 0.333 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0315 (12) 0.0437 (14) 0.0382 (13) 0.0044 (10) 0.0024 (10) 0.0000 (10)
C2 0.0428 (14) 0.0448 (14) 0.0359 (13) 0.0018 (11) −0.0064 (10) −0.0049 (11)
C3 0.0367 (13) 0.0384 (13) 0.0454 (14) −0.0061 (10) −0.0063 (10) 0.0013 (11)
C4 0.0264 (11) 0.0372 (12) 0.0381 (12) 0.0032 (9) −0.0023 (9) 0.0006 (10)
C5 0.0358 (13) 0.0497 (15) 0.0375 (13) −0.0078 (11) −0.0008 (10) −0.0066 (11)
C6 0.0377 (13) 0.0499 (15) 0.0468 (14) −0.0137 (11) 0.0038 (11) −0.0047 (12)
C7 0.0300 (12) 0.0394 (13) 0.0391 (13) −0.0008 (10) −0.0044 (10) 0.0003 (10)
C8 0.0323 (13) 0.0430 (14) 0.0540 (15) 0.0056 (10) −0.0027 (11) 0.0084 (12)
C9 0.0319 (13) 0.0584 (17) 0.0506 (15) 0.0033 (11) −0.0103 (11) 0.0008 (12)
C10 0.0298 (12) 0.0462 (15) 0.0581 (16) −0.0023 (10) 0.0036 (11) −0.0075 (12)
C11 0.0359 (14) 0.0597 (17) 0.0589 (17) −0.0007 (12) 0.0089 (12) 0.0180 (14)
C12 0.0344 (13) 0.082 (2) 0.0379 (14) −0.0010 (13) −0.0006 (11) 0.0131 (13)
C13 0.0474 (15) 0.0620 (18) 0.0423 (14) −0.0006 (13) 0.0078 (12) −0.0031 (13)
C14 0.0346 (12) 0.0452 (14) 0.0391 (13) 0.0069 (10) 0.0037 (10) −0.0038 (11)
C15 0.0391 (13) 0.0524 (16) 0.0441 (14) −0.0019 (11) −0.0103 (11) −0.0096 (12)
C16 0.0398 (13) 0.0411 (14) 0.0455 (14) −0.0081 (11) −0.0041 (11) −0.0031 (11)
C17 0.0282 (11) 0.0429 (13) 0.0326 (12) −0.0039 (10) 0.0034 (9) −0.0037 (10)
C18 0.0366 (13) 0.0478 (15) 0.0402 (13) −0.0089 (11) −0.0007 (10) −0.0085 (11)
C19 0.0419 (13) 0.0362 (13) 0.0458 (14) −0.0024 (10) 0.0060 (11) −0.0025 (11)
C20 0.0337 (12) 0.0430 (14) 0.0355 (12) −0.0081 (10) 0.0015 (10) −0.0027 (10)
C26 0.0471 (15) 0.0555 (17) 0.0517 (16) 0.0108 (13) −0.0020 (12) 0.0031 (13)
O1 0.0293 (9) 0.0739 (13) 0.0442 (10) 0.0017 (8) −0.0065 (7) 0.0121 (9)
N1 0.0266 (10) 0.0491 (12) 0.0393 (11) 0.0000 (8) −0.0023 (8) 0.0093 (9)
O2 0.0403 (11) 0.0565 (12) 0.1079 (18) −0.0095 (9) −0.0029 (11) −0.0127 (12)
O3 0.0340 (9) 0.0783 (13) 0.0472 (10) −0.0111 (9) 0.0048 (8) 0.0139 (9)
Cl1 0.0836 (6) 0.0706 (5) 0.0591 (5) 0.0037 (4) 0.0180 (4) 0.0208 (4)
Cl2 0.0733 (5) 0.0911 (6) 0.0425 (4) 0.0114 (4) −0.0080 (3) 0.0028 (4)
C21 0.034 (3) 0.038 (4) 0.037 (3) 0.001 (2) 0.008 (2) −0.001 (2)
C22 0.029 (3) 0.048 (4) 0.054 (4) −0.004 (3) 0.006 (2) −0.001 (3)
C23 0.035 (3) 0.053 (4) 0.055 (3) −0.002 (2) −0.0049 (19) −0.006 (3)
C24 0.040 (3) 0.067 (6) 0.039 (3) 0.001 (3) −0.009 (2) −0.003 (3)
C25 0.041 (3) 0.051 (4) 0.034 (3) 0.000 (3) 0.000 (2) 0.005 (3)
O4 0.0366 (16) 0.082 (2) 0.074 (2) −0.0104 (14) −0.0054 (13) −0.0299 (17)
N2 0.029 (2) 0.041 (6) 0.031 (2) −0.0078 (18) 0.0001 (16) 0.001 (3)
C21' 0.037 (5) 0.054 (9) 0.033 (5) −0.003 (5) −0.001 (4) 0.002 (5)
C22' 0.027 (6) 0.047 (6) 0.041 (5) 0.001 (4) −0.001 (4) 0.005 (4)
C23' 0.032 (5) 0.050 (5) 0.046 (5) 0.005 (3) −0.004 (3) 0.003 (3)
C24' 0.040 (5) 0.047 (7) 0.043 (5) 0.003 (4) 0.000 (4) −0.001 (4)
C25' 0.034 (5) 0.037 (5) 0.035 (5) 0.002 (4) 0.009 (4) 0.001 (4)
O4' 0.035 (3) 0.046 (3) 0.075 (4) 0.004 (3) 0.003 (2) 0.000 (3)
N2' 0.038 (5) 0.027 (8) 0.036 (4) −0.004 (3) 0.002 (3) −0.002 (4)

Geometric parameters (Å, º)

C1—C6 1.379 (3) C18—H18 0.9300
C1—C2 1.380 (3) C19—H19 0.9300
C1—C13 1.493 (3) C20—O3 1.233 (3)
C2—C3 1.376 (3) C20—N2 1.335 (7)
C2—H2 0.9300 C20—N2' 1.359 (14)
C3—C4 1.384 (3) C26—Cl2 1.793 (3)
C3—H3 0.9300 C26—H26A 0.9700
C4—C5 1.380 (3) C26—H26B 0.9700
C4—C7 1.495 (3) O2—H2A 0.8200
C5—C6 1.373 (3) C21—N2 1.489 (10)
C5—H5 0.9300 C21—C22 1.512 (8)
C6—H6 0.9300 C21—H21A 0.9700
C7—O1 1.235 (3) C21—H21B 0.9700
C7—N1 1.337 (3) C22—C23 1.511 (8)
C8—N1 1.461 (3) C22—H22A 0.9700
C8—C9 1.508 (3) C22—H22B 0.9700
C8—H8A 0.9700 C23—O4 1.391 (8)
C8—H8B 0.9700 C23—C24 1.521 (9)
C9—C10 1.510 (4) C23—H23 0.9800
C9—H9A 0.9700 C24—C25 1.505 (8)
C9—H9B 0.9700 C24—H24A 0.9700
C10—O2 1.417 (3) C24—H24B 0.9700
C10—C11 1.511 (4) C25—N2 1.483 (9)
C10—H10 0.9800 C25—H25A 0.9700
C11—C12 1.514 (4) C25—H25B 0.9700
C11—H11A 0.9700 O4—H4 0.8200
C11—H11B 0.9700 C21'—N2' 1.41 (2)
C12—N1 1.460 (3) C21'—C22' 1.544 (16)
C12—H12A 0.9700 C21'—H21C 0.9700
C12—H12B 0.9700 C21'—H21D 0.9700
C13—Cl1 1.789 (3) C22'—C23' 1.540 (14)
C13—H13A 0.9700 C22'—H22C 0.9700
C13—H13B 0.9700 C22'—H22D 0.9700
C14—C19 1.384 (3) C23'—O4' 1.372 (14)
C14—C15 1.385 (4) C23'—C24' 1.551 (15)
C14—C26 1.496 (3) C23'—H23' 0.9800
C15—C16 1.373 (3) C24'—C25' 1.538 (15)
C15—H15 0.9300 C24'—H24C 0.9700
C16—C17 1.383 (3) C24'—H24D 0.9700
C16—H16 0.9300 C25'—N2' 1.411 (19)
C17—C18 1.380 (3) C25'—H25C 0.9700
C17—C20 1.496 (3) C25'—H25D 0.9700
C18—C19 1.380 (3) O4'—H4' 0.8200
C6—C1—C2 118.6 (2) N2'—C20—C17 119.6 (8)
C6—C1—C13 120.9 (2) C14—C26—Cl2 110.88 (18)
C2—C1—C13 120.5 (2) C14—C26—H26A 109.5
C3—C2—C1 120.8 (2) Cl2—C26—H26A 109.5
C3—C2—H2 119.6 C14—C26—H26B 109.5
C1—C2—H2 119.6 Cl2—C26—H26B 109.5
C2—C3—C4 120.3 (2) H26A—C26—H26B 108.1
C2—C3—H3 119.9 C7—N1—C12 120.33 (19)
C4—C3—H3 119.9 C7—N1—C8 125.23 (19)
C5—C4—C3 118.9 (2) C12—N1—C8 113.28 (19)
C5—C4—C7 119.0 (2) C10—O2—H2A 109.5
C3—C4—C7 121.8 (2) N2—C21—C22 108.0 (10)
C6—C5—C4 120.5 (2) N2—C21—H21A 110.1
C6—C5—H5 119.8 C22—C21—H21A 110.1
C4—C5—H5 119.8 N2—C21—H21B 110.1
C5—C6—C1 120.9 (2) C22—C21—H21B 110.1
C5—C6—H6 119.5 H21A—C21—H21B 108.4
C1—C6—H6 119.5 C23—C22—C21 113.4 (10)
O1—C7—N1 121.9 (2) C23—C22—H22A 108.9
O1—C7—C4 119.1 (2) C21—C22—H22A 108.9
N1—C7—C4 118.95 (19) C23—C22—H22B 108.9
N1—C8—C9 110.5 (2) C21—C22—H22B 108.9
N1—C8—H8A 109.6 H22A—C22—H22B 107.7
C9—C8—H8A 109.6 O4—C23—C22 110.9 (6)
N1—C8—H8B 109.6 O4—C23—C24 106.8 (7)
C9—C8—H8B 109.6 C22—C23—C24 106.4 (10)
H8A—C8—H8B 108.1 O4—C23—H23 110.9
C8—C9—C10 111.0 (2) C22—C23—H23 110.9
C8—C9—H9A 109.4 C24—C23—H23 110.9
C10—C9—H9A 109.4 C25—C24—C23 109.3 (10)
C8—C9—H9B 109.4 C25—C24—H24A 109.8
C10—C9—H9B 109.4 C23—C24—H24A 109.8
H9A—C9—H9B 108.0 C25—C24—H24B 109.8
O2—C10—C11 108.6 (2) C23—C24—H24B 109.8
O2—C10—C9 112.8 (2) H24A—C24—H24B 108.3
C11—C10—C9 109.2 (2) N2—C25—C24 107.6 (10)
O2—C10—H10 108.7 N2—C25—H25A 110.2
C11—C10—H10 108.7 C24—C25—H25A 110.2
C9—C10—H10 108.7 N2—C25—H25B 110.2
C10—C11—C12 111.0 (2) C24—C25—H25B 110.2
C10—C11—H11A 109.4 H25A—C25—H25B 108.5
C12—C11—H11A 109.4 C23—O4—H4 109.5
C10—C11—H11B 109.4 C20—N2—C25 119.2 (7)
C12—C11—H11B 109.4 C20—N2—C21 122.5 (8)
H11A—C11—H11B 108.0 C25—N2—C21 116.6 (9)
N1—C12—C11 110.3 (2) N2'—C21'—C22' 115 (2)
N1—C12—H12A 109.6 N2'—C21'—H21C 108.5
C11—C12—H12A 109.6 C22'—C21'—H21C 108.5
N1—C12—H12B 109.6 N2'—C21'—H21D 108.5
C11—C12—H12B 109.6 C22'—C21'—H21D 108.5
H12A—C12—H12B 108.1 H21C—C21'—H21D 107.5
C1—C13—Cl1 111.73 (18) C23'—C22'—C21' 106 (2)
C1—C13—H13A 109.3 C23'—C22'—H22C 110.6
Cl1—C13—H13A 109.3 C21'—C22'—H22C 110.6
C1—C13—H13B 109.3 C23'—C22'—H22D 110.6
Cl1—C13—H13B 109.3 C21'—C22'—H22D 110.6
H13A—C13—H13B 107.9 H22C—C22'—H22D 108.7
C19—C14—C15 118.6 (2) O4'—C23'—C22' 115.4 (15)
C19—C14—C26 120.4 (2) O4'—C23'—C24' 100.2 (15)
C15—C14—C26 121.1 (2) C22'—C23'—C24' 113 (2)
C16—C15—C14 120.8 (2) O4'—C23'—H23' 109.4
C16—C15—H15 119.6 C22'—C23'—H23' 109.4
C14—C15—H15 119.6 C24'—C23'—H23' 109.4
C15—C16—C17 120.6 (2) C25'—C24'—C23' 113 (2)
C15—C16—H16 119.7 C25'—C24'—H24C 109.0
C17—C16—H16 119.7 C23'—C24'—H24C 109.0
C18—C17—C16 119.0 (2) C25'—C24'—H24D 109.0
C18—C17—C20 121.3 (2) C23'—C24'—H24D 109.0
C16—C17—C20 119.4 (2) H24C—C24'—H24D 107.8
C19—C18—C17 120.4 (2) N2'—C25'—C24' 115 (2)
C19—C18—H18 119.8 N2'—C25'—H25C 108.5
C17—C18—H18 119.8 C24'—C25'—H25C 108.5
C18—C19—C14 120.7 (2) N2'—C25'—H25D 108.5
C18—C19—H19 119.7 C24'—C25'—H25D 108.5
C14—C19—H19 119.7 H25C—C25'—H25D 107.5
O3—C20—N2 122.4 (4) C23'—O4'—H4' 109.5
O3—C20—N2' 121.2 (8) C20—N2'—C21' 129.3 (18)
O3—C20—C17 118.9 (2) C20—N2'—C25' 122.8 (15)
N2—C20—C17 118.2 (4) C21'—N2'—C25' 107.6 (19)
C6—C1—C2—C3 1.0 (4) C19—C14—C26—Cl2 101.6 (3)
C13—C1—C2—C3 179.7 (2) C15—C14—C26—Cl2 −79.3 (3)
C1—C2—C3—C4 −2.1 (4) O1—C7—N1—C12 −3.4 (4)
C2—C3—C4—C5 1.4 (4) C4—C7—N1—C12 173.9 (2)
C2—C3—C4—C7 −172.8 (2) O1—C7—N1—C8 163.5 (2)
C3—C4—C5—C6 0.3 (4) C4—C7—N1—C8 −19.2 (4)
C7—C4—C5—C6 174.6 (2) C11—C12—N1—C7 −135.0 (2)
C4—C5—C6—C1 −1.3 (4) C11—C12—N1—C8 56.6 (3)
C2—C1—C6—C5 0.6 (4) C9—C8—N1—C7 135.6 (3)
C13—C1—C6—C5 −178.0 (2) C9—C8—N1—C12 −56.7 (3)
C5—C4—C7—O1 −52.0 (3) N2—C21—C22—C23 52.6 (15)
C3—C4—C7—O1 122.2 (3) C21—C22—C23—O4 −176.1 (9)
C5—C4—C7—N1 130.6 (2) C21—C22—C23—C24 −60.4 (12)
C3—C4—C7—N1 −55.2 (3) O4—C23—C24—C25 −177.4 (8)
N1—C8—C9—C10 56.2 (3) C22—C23—C24—C25 64.1 (11)
C8—C9—C10—O2 −177.3 (2) C23—C24—C25—N2 −61.6 (13)
C8—C9—C10—C11 −56.4 (3) O3—C20—N2—C25 −0.8 (16)
O2—C10—C11—C12 179.8 (2) C17—C20—N2—C25 171.0 (9)
C9—C10—C11—C12 56.4 (3) O3—C20—N2—C21 163.4 (9)
C10—C11—C12—N1 −56.2 (3) C17—C20—N2—C21 −24.7 (17)
C6—C1—C13—Cl1 −78.8 (3) C24—C25—N2—C20 −138.2 (12)
C2—C1—C13—Cl1 102.6 (3) C24—C25—N2—C21 56.6 (15)
C19—C14—C15—C16 −0.1 (4) C22—C21—N2—C20 144.2 (14)
C26—C14—C15—C16 −179.2 (2) C22—C21—N2—C25 −51.2 (16)
C14—C15—C16—C17 −1.3 (4) N2'—C21'—C22'—C23' 63 (3)
C15—C16—C17—C18 1.3 (4) C21'—C22'—C23'—O4' 67 (2)
C15—C16—C17—C20 174.8 (2) C21'—C22'—C23'—C24' −47 (2)
C16—C17—C18—C19 0.1 (4) O4'—C23'—C24'—C25' −82 (2)
C20—C17—C18—C19 −173.3 (2) C22'—C23'—C24'—C25' 42 (2)
C17—C18—C19—C14 −1.5 (4) C23'—C24'—C25'—N2' −46 (3)
C15—C14—C19—C18 1.5 (4) O3—C20—N2'—C21' 173 (2)
C26—C14—C19—C18 −179.4 (2) C17—C20—N2'—C21' −1 (4)
C18—C17—C20—O3 118.4 (3) O3—C20—N2'—C25' −15 (4)
C16—C17—C20—O3 −55.0 (3) C17—C20—N2'—C25' 172 (2)
C18—C17—C20—N2 −53.7 (8) C22'—C21'—N2'—C20 106 (3)
C16—C17—C20—N2 132.9 (8) C22'—C21'—N2'—C25' −68 (3)
C18—C17—C20—N2' −67.9 (17) C24'—C25'—N2'—C20 −117 (3)
C16—C17—C20—N2' 118.7 (17) C24'—C25'—N2'—C21' 57 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O2—H2A···O1i 0.82 2.18 2.789 (2) 132
O4—H4···O3ii 0.82 2.13 2.793 (3) 138
C11—H11B···O3iii 0.97 2.60 3.522 (3) 160
C26—H26A···O2iv 0.97 2.59 3.494 (4) 154

Symmetry codes: (i) x−1, y, z; (ii) x+1, y, z; (iii) −x+1, −y, −z+1; (iv) x, y+1, z.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: BG2567).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
  2. Bolzani, V. da S., Gunatilaka, A. A. L. & Kingston, D. G. I. (1995). Tetrahedron, 51, 5929–5934.
  3. Bräu, M. E., Branitzki, P., Olschewski, A., Vogel, W. & Hempelmann, G. (2000). Anesth. Analg. 91, 1499–1505. [DOI] [PubMed]
  4. Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. [DOI] [PubMed]
  6. Campfield, L. A., Smith, F. J., Mackie, G., Tenenbaum, R., Sassano, M. L., Mullin, J. & Kierstead, R. W. (1995). Obes. Res. Clin. Pract. 3, 591S–603S. [DOI] [PubMed]
  7. Daly, J. W. & Spande, T. F. (1986). Alkaloids: Chemical and Biological Perspectives, Vol. 4, edited by S. W. Pelletier, pp. 1–274. New York: Wiley.
  8. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  9. Fodor, G. B. & Colasanti, B. (1985). Alkaloids: Chemical and Biological Perspectives, Vol. 3, edited by S. W. Pelletier, pp. 1–91. New York: Wiley.
  10. Gulluoglu, M. T., Erdogdu, Y. & Yurdakul, S. (2007). J. Mol. Struct. pp. 834–836.
  11. Kozikowski, A. P., Araldi, G. L., Boja, J., Meil, W. M., Johnson, K. M., Flippen-Anderson, J. L., George, C. & Saiah, E. (1998). J. Med. Chem. 41, 1962–1969. [DOI] [PubMed]
  12. Prathebha, K., Reuben Jonathan, D., Revathi, B. K., Sathya, S. & Usha, G. (2015). Acta Cryst. E71, o39–o40. [DOI] [PMC free article] [PubMed]
  13. Revathi, B. K., Reuben Jonathan, D., Sathya, S., Prathebha, K. & Usha, G. (2015). Acta Cryst. E71, o359–o360. [DOI] [PMC free article] [PubMed]
  14. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989015016096/bg2567sup1.cif

e-71-0o703-sup1.cif (1.1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015016096/bg2567Isup2.hkl

e-71-0o703-Isup2.hkl (351.4KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015016096/bg2567Isup3.cml

. DOI: 10.1107/S2056989015016096/bg2567fig1.tif

The mol­ecular structure of the title compound (left: mol­ecula A; right: mol­ecule B), with displacement ellipsoids drawn at the 30% probability level.

. DOI: 10.1107/S2056989015016096/bg2567fig2.tif

The packing of the mol­ecules in the crystal structure. The dashed lines indicate the hydrogen bonds.

CCDC reference: 1421009

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES