Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Sep 26;71(Pt 10):1219–1221. doi: 10.1107/S2056989015017429

Crystal structure of di-μ-isobutyrato-κ4 O:O′-bis­[cis-di­chlorido­(dimethyl sulfoxide-κS)rhenium(III)]

Alexander A Golichenko a,*, Alexander V Shtemenko a
PMCID: PMC4647422  PMID: 26594411

A binuclear bis­(carboxyl­ato)dirhenium(III) complex is reported. The compound is a representative of a small class of alkyl­carboxyl­ate complexes involving a quadruple metal–metal bonds

Keywords: crystal structure, rhenium(III), cluster, alkyl­carboxyl­ate complex, quadruple metal–metal bond, hydrogen bonding

Abstract

The title compound, [Re2(C3H7COO)2Cl4{(CH3)2SO}2], comprises binuclear complex mol­ecules [Re—Re = 2.24502 (13) Å] involving cis-oriented double carboxyl­ate bridges, four equatorial chloride ions and two weakly bonded O atoms from dimethyl sulfoxide ligands in the axial positions at the ReIII atoms. In the crystal, mol­ecules are linked into corrugated layers parallel to (101) by very weak C—H⋯Cl and C—H⋯O hydrogen-bonding inter­actions. C—H⋯Cl hydrogen bonding provides the links between layers to consolidate a three-dimensional framework.

Chemical context  

Binuclear rhenium(III) clusters are classical complexes with a unique quadruple metal–metal bond (Cotton et al., 2005, Golichenko & Shtemenko, 2006). In our previous work we have shown that such compounds with chloride and alkyl­carboxyl­ate equatorial ligands exhibit anti­tumor, anti­radical and hepato- and nephroprotective biological activity with low toxicity (Dimitrov et al., 1978, Shtemenko et al., 2007, 2008, 2009, 2013).graphic file with name e-71-01219-scheme1.jpg

Labile axial ligands and equatorial chloride groups are the reactive centers in inter­actions with other chemical compounds and biological macromolecules in vitro and in vivo (Shtemenko et al., 2013). In this context, we present the synthesis and the structure of the title dirhenium(III) complex with isobutyrate equatorial ligands as biologically active groups, which can exhibit anti­tumor activity in the tetra­carboxyl­ate compound Re2(i-C3H7COO)4Cl2 (Shtemenko et al., 2007).

Structural commentary  

The quadruple Re—Re bond [2.24502 (13) Å] is typical for related di­carboxyl­ato clusters (Cotton et al., 2005, Shtemenko et al., 2009) and the coordination of each of the rhenium ions also comprises two chlorides and two oxygen atoms of carboxyl­ate ligands (Fig. 1). The distorted octa­hedral coordination geometry of Re1 and Re2 is completed by weakly bonded oxygen atoms from dimethyl sulfoxide ligands [Re1—O6 = 2.3282 (15) and Re2—O5 = 2.3938 (15) Å], in trans-positions to the Re—Re bond. This may be compared with a similar weak binding of N- or O-donors, which is characteristic of di­carboxyl­atodirhenium compounds (Bera et al., 2003, Shtemenko et al., 2009, Golichenko et al., 2015).

Figure 1.

Figure 1

The structure of cis-Re2Cl4{i-C3H7COO}2·2(CH3)2SO, showing displacement ellipsoids drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radii.

Supra­molecular features  

Inter­molecular bonding is only very weak: it comprises distal, though relatively directional, C—H⋯O and C—H⋯Cl hydrogen-bond inter­actions between the methine- and methyl-H of the carboxyl­ate and DMSO ligands (Table 1). The shortest bonds found for the chloride acceptors are C6—H6⋯Cl3ii [C6⋯Cl3ii = 3.519 (2) Å; symmetry code (ii): Inline graphic − x, Inline graphic + y, Inline graphic − z], which unite the mol­ecules into chains along the b axis (Fig. 2). The hydrogen bonds adopted by two methyl groups of DMSO mol­ecules (referenced by a sulfur atoms S2) assemble these chains into corrugated layers parallel to (101). A very weak bond of this type is found also between adjacent layers: C12⋯Cl2iii = 3.751 (3) Å; symmetry code (iii): −Inline graphic − x, Inline graphic + y, Inline graphic − z] (Table 1). The latter extends the structure into a third direction and provides the formation of a hydrogen-bonded framework.

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
C11H11BO2i 0.98 2.40 3.324(3) 156
C6H6Cl3ii 1.00 2.73 3.519(2) 136
C12H12ACl2iii 0.98 2.82 3.751(3) 159
C12H12BCl3i 0.98 2.82 3.760(3) 161

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Figure 2.

Figure 2

A fragment of the structure, showing weak C—H⋯O and C—H⋯Cl hydrogen-bond inter­actions (dashed lines), which assemble the mol­ecules into corrugated layers parallel to (101). [Symmetry codes: (i) −Inline graphic + x, Inline graphic − y, Inline graphic + z; (ii) Inline graphic − x, Inline graphic + y, Inline graphic − z.]

Synthesis and crystallization  

[NBu4]2[Re2Cl8] (0.2 g, 0.175 mmol) was added to isobutyric acid (10 ml). The mixture was heated for 3 h in a water bath under an inert atmosphere. DMSO (0.5 ml) was then added to the resulting blue solution at room temperature. A dark-blue crystalline product (0.12 g, yield 81%) was obtained after 12 h, was collected by filtration and dried in air.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. All H were refined using a riding-model approximation, with C—H = 0.98–1.00 Å, and with U iso(H) = 1.2U eq(C) or 1.5U eq(C) for methyl H atoms. A rotating model was used for the methyl groups. Six outliers (2 6 1, 3 3 3, Inline graphic 4 3, 0 1 1, Inline graphic 3 4, 3 3 7) were omitted in the last cycles of refinement.

Table 2. Experimental details.

Crystal data
Chemical formula [Re2(C4H7O2)2Cl4(C2H6OS)2]
M r 844.65
Crystal system, space group Monoclinic, P21/n
Temperature (K) 110
a, b, c () 10.5581(4), 14.7406(5), 15.6088(6)
() 100.794(2)
V (3) 2386.26(15)
Z 4
Radiation type Mo K
(mm1) 10.78
Crystal size (mm) 0.22 0.18 0.09
 
Data collection
Diffractometer Siemens SMART CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2008)
T min, T max 0.133, 0.478
No. of measured, independent and observed [I > 2(I)] reflections 93039, 14497, 11921
R int 0.040
(sin /)max (1) 0.909
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.025, 0.049, 1.00
No. of reflections 14497
No. of parameters 243
H-atom treatment H-atom parameters constrained
max, min (e 3) 1.71, 1.14

Computer programs: APEX2 and SAINT (Bruker, 2008), SHELXS97 (Sheldrick 2008), SHELXL2014 (Sheldrick, 2015), DIAMOND (Brandenburg, 1999) and WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015017429/rz5165sup1.cif

e-71-01219-sup1.cif (3MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015017429/rz5165Isup2.hkl

e-71-01219-Isup2.hkl (1.1MB, hkl)

CCDC reference: 1425634

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the fund Grant for Science Research (No. 0111U000111) from the Ministry of Education and Science of Ukraine. We also thank COST Action CM 1105 for supporting this study. We thank Joseph H. Reibenspies (Texas A&M University, College Station, USA) and Professor Konstantin V. Domasevitch (National Taras Shevchenko University of Kyiv, Ukraine) for providing facilities for a portion of these studies, and helpful discussions.

supplementary crystallographic information

Crystal data

[Re2(C4H7O2)2Cl4(C2H6OS)2] F(000) = 1584
Mr = 844.65 Dx = 2.351 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 10.5581 (4) Å Cell parameters from 9919 reflections
b = 14.7406 (5) Å θ = 2.4–39.0°
c = 15.6088 (6) Å µ = 10.78 mm1
β = 100.794 (2)° T = 110 K
V = 2386.26 (15) Å3 Plate, blue
Z = 4 0.22 × 0.18 × 0.09 mm

Data collection

Siemens SMART CCD area-detector diffractometer 11921 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.040
phi and ω scans θmax = 40.2°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −19→18
Tmin = 0.133, Tmax = 0.478 k = −25→26
93039 measured reflections l = −28→27
14497 independent reflections

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025 H-atom parameters constrained
wR(F2) = 0.049 w = 1/[σ2(Fo2) + (0.0183P)2 + 1.7981P] where P = (Fo2 + 2Fc2)/3
S = 1.00 (Δ/σ)max = 0.002
14497 reflections Δρmax = 1.71 e Å3
243 parameters Δρmin = −1.14 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Re1 −0.06723 (2) 0.17363 (2) 0.27880 (2) 0.01130 (2)
Re2 0.10986 (2) 0.16371 (2) 0.21905 (2) 0.01147 (2)
Cl1 −0.01954 (5) 0.08982 (4) 0.40554 (3) 0.02107 (9)
Cl2 −0.19965 (5) 0.05974 (3) 0.21084 (3) 0.01810 (8)
Cl3 0.06421 (5) 0.04494 (3) 0.12210 (3) 0.01726 (8)
Cl4 0.25202 (5) 0.07759 (3) 0.31739 (3) 0.02151 (9)
S1 0.41251 (5) 0.24240 (4) 0.20176 (3) 0.01935 (9)
S2 −0.23871 (5) 0.25929 (3) 0.42297 (3) 0.01756 (9)
O1 −0.14493 (13) 0.26371 (9) 0.18365 (9) 0.0142 (2)
O2 0.02927 (14) 0.25241 (9) 0.12399 (9) 0.0145 (2)
O3 0.18421 (14) 0.27603 (9) 0.28722 (9) 0.0159 (3)
O4 0.01121 (14) 0.28533 (9) 0.34802 (9) 0.0158 (3)
O5 0.28531 (14) 0.20575 (10) 0.14988 (10) 0.0189 (3)
O6 −0.24413 (14) 0.23612 (10) 0.32675 (9) 0.0189 (3)
C1 −0.07803 (18) 0.29012 (12) 0.12848 (12) 0.0133 (3)
C2 −0.1181 (2) 0.37225 (13) 0.07331 (14) 0.0181 (4)
H2 −0.1090 0.3585 0.0120 0.022*
C3 −0.2560 (2) 0.40050 (17) 0.07314 (17) 0.0274 (5)
H3A −0.2788 0.4516 0.0330 0.041*
H3B −0.2647 0.4188 0.1321 0.041*
H3C −0.3138 0.3494 0.0542 0.041*
C4 −0.0227 (3) 0.44808 (16) 0.1087 (2) 0.0354 (6)
H4A 0.0658 0.4260 0.1125 0.053*
H4B −0.0358 0.4662 0.1668 0.053*
H4C −0.0371 0.5004 0.0694 0.053*
C5 0.1204 (2) 0.31512 (13) 0.33854 (12) 0.0152 (3)
C6 0.1796 (2) 0.39547 (14) 0.38935 (14) 0.0197 (4)
H6 0.2283 0.4313 0.3518 0.024*
C7 0.0785 (3) 0.4565 (2) 0.4167 (2) 0.0469 (8)
H7A 0.0176 0.4764 0.3649 0.070*
H7B 0.1206 0.5095 0.4476 0.070*
H7C 0.0321 0.4229 0.4554 0.070*
C8 0.2750 (3) 0.36103 (19) 0.46883 (17) 0.0337 (6)
H8A 0.3380 0.3207 0.4495 0.051*
H8B 0.2282 0.3276 0.5074 0.051*
H8C 0.3200 0.4127 0.5004 0.051*
C9 0.4146 (3) 0.36054 (17) 0.1775 (2) 0.0360 (6)
H9A 0.4047 0.3689 0.1143 0.054*
H9B 0.4968 0.3868 0.2065 0.054*
H9C 0.3435 0.3908 0.1984 0.054*
C10 0.5306 (2) 0.20667 (18) 0.14113 (18) 0.0291 (5)
H10A 0.5367 0.1403 0.1425 0.044*
H10B 0.6144 0.2329 0.1669 0.044*
H10C 0.5057 0.2272 0.0806 0.044*
C11 −0.3361 (3) 0.17496 (16) 0.46035 (17) 0.0286 (5)
H11A −0.4191 0.1709 0.4200 0.043*
H11B −0.3508 0.1913 0.5186 0.043*
H11C −0.2922 0.1162 0.4631 0.043*
C12 −0.3441 (3) 0.35344 (17) 0.42132 (18) 0.0338 (6)
H12A −0.3087 0.4057 0.3950 0.051*
H12B −0.3529 0.3685 0.4811 0.051*
H12C −0.4289 0.3381 0.3870 0.051*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Re1 0.01040 (3) 0.01222 (3) 0.01171 (3) −0.00114 (2) 0.00320 (2) 0.00002 (2)
Re2 0.00953 (3) 0.01154 (3) 0.01360 (3) 0.00081 (2) 0.00288 (2) 0.00041 (2)
Cl1 0.0222 (2) 0.0241 (2) 0.0166 (2) −0.00111 (18) 0.00305 (17) 0.00674 (16)
Cl2 0.0161 (2) 0.01640 (19) 0.0219 (2) −0.00426 (15) 0.00380 (17) −0.00305 (15)
Cl3 0.0169 (2) 0.01521 (19) 0.0201 (2) 0.00138 (15) 0.00460 (16) −0.00402 (14)
Cl4 0.0167 (2) 0.0215 (2) 0.0244 (2) 0.00463 (17) −0.00088 (18) 0.00541 (17)
S1 0.0130 (2) 0.0223 (2) 0.0230 (2) −0.00283 (17) 0.00407 (18) −0.00136 (17)
S2 0.0194 (2) 0.0189 (2) 0.0162 (2) −0.00284 (17) 0.00824 (17) −0.00281 (15)
O1 0.0120 (6) 0.0153 (6) 0.0159 (6) 0.0000 (5) 0.0041 (5) 0.0022 (4)
O2 0.0133 (6) 0.0153 (6) 0.0157 (6) 0.0025 (5) 0.0048 (5) 0.0026 (4)
O3 0.0136 (6) 0.0161 (6) 0.0186 (6) −0.0023 (5) 0.0044 (5) −0.0023 (5)
O4 0.0156 (7) 0.0163 (6) 0.0162 (6) −0.0038 (5) 0.0050 (5) −0.0034 (5)
O5 0.0108 (6) 0.0225 (7) 0.0238 (7) −0.0020 (5) 0.0040 (5) −0.0011 (5)
O6 0.0164 (7) 0.0255 (7) 0.0167 (7) −0.0009 (5) 0.0076 (5) −0.0038 (5)
C1 0.0134 (8) 0.0128 (7) 0.0135 (8) 0.0015 (6) 0.0022 (6) −0.0002 (5)
C2 0.0175 (9) 0.0170 (8) 0.0199 (9) 0.0037 (7) 0.0034 (7) 0.0046 (6)
C3 0.0184 (10) 0.0275 (11) 0.0353 (13) 0.0065 (8) 0.0025 (9) 0.0084 (9)
C4 0.0254 (12) 0.0162 (10) 0.0617 (18) −0.0007 (8) 0.0004 (12) 0.0048 (10)
C5 0.0161 (9) 0.0132 (8) 0.0155 (8) −0.0013 (6) 0.0015 (7) −0.0012 (6)
C6 0.0206 (10) 0.0179 (9) 0.0204 (9) −0.0062 (7) 0.0028 (7) −0.0044 (7)
C7 0.0375 (16) 0.0298 (14) 0.072 (2) −0.0008 (11) 0.0079 (15) −0.0319 (14)
C8 0.0341 (14) 0.0370 (14) 0.0254 (12) −0.0122 (11) −0.0065 (10) −0.0026 (9)
C9 0.0340 (14) 0.0203 (11) 0.0549 (17) −0.0051 (10) 0.0113 (13) −0.0022 (10)
C10 0.0134 (9) 0.0340 (13) 0.0412 (14) 0.0010 (8) 0.0083 (9) −0.0067 (10)
C11 0.0379 (14) 0.0239 (11) 0.0294 (12) −0.0072 (9) 0.0206 (11) −0.0015 (8)
C12 0.0494 (17) 0.0237 (11) 0.0322 (13) 0.0104 (11) 0.0172 (12) −0.0002 (9)

Geometric parameters (Å, º)

Re1—O1 2.0459 (13) C3—H3C 0.9800
Re1—O4 2.0565 (13) C4—H4A 0.9800
Re1—Re2 2.2450 (1) C4—H4B 0.9800
Re1—Cl1 2.3065 (5) C4—H4C 0.9800
Re1—Cl2 2.3115 (5) C5—C6 1.495 (3)
Re1—O6 2.3282 (15) C6—C7 1.517 (4)
Re2—O2 2.0401 (13) C6—C8 1.531 (3)
Re2—O3 2.0437 (14) C6—H6 1.0000
Re2—Cl3 2.3052 (5) C7—H7A 0.9800
Re2—Cl4 2.3147 (5) C7—H7B 0.9800
Re2—O5 2.3938 (15) C7—H7C 0.9800
S1—O5 1.5310 (15) C8—H8A 0.9800
S1—C10 1.780 (2) C8—H8B 0.9800
S1—C9 1.783 (3) C8—H8C 0.9800
S2—O6 1.5308 (15) C9—H9A 0.9800
S2—C12 1.776 (3) C9—H9B 0.9800
S2—C11 1.780 (2) C9—H9C 0.9800
O1—C1 1.273 (2) C10—H10A 0.9800
O2—C1 1.276 (2) C10—H10B 0.9800
O3—C5 1.276 (2) C10—H10C 0.9800
O4—C5 1.268 (3) C11—H11A 0.9800
C1—C2 1.500 (3) C11—H11B 0.9800
C2—C3 1.514 (3) C11—H11C 0.9800
C2—C4 1.536 (3) C12—H12A 0.9800
C2—H2 1.0000 C12—H12B 0.9800
C3—H3A 0.9800 C12—H12C 0.9800
C3—H3B 0.9800
O1—Re1—O4 85.93 (6) C2—C3—H3C 109.5
O1—Re1—Re2 89.58 (4) H3A—C3—H3C 109.5
O4—Re1—Re2 89.18 (4) H3B—C3—H3C 109.5
O1—Re1—Cl1 164.51 (4) C2—C4—H4A 109.5
O4—Re1—Cl1 88.65 (4) C2—C4—H4B 109.5
Re2—Re1—Cl1 104.857 (14) H4A—C4—H4B 109.5
O1—Re1—Cl2 90.71 (4) C2—C4—H4C 109.5
O4—Re1—Cl2 166.43 (4) H4A—C4—H4C 109.5
Re2—Re1—Cl2 103.960 (13) H4B—C4—H4C 109.5
Cl1—Re1—Cl2 91.189 (19) O4—C5—O3 121.00 (17)
O1—Re1—O6 74.92 (5) O4—C5—C6 120.74 (18)
O4—Re1—O6 77.45 (6) O3—C5—C6 118.24 (18)
Re2—Re1—O6 160.04 (4) C5—C6—C7 111.87 (19)
Cl1—Re1—O6 89.75 (4) C5—C6—C8 108.26 (18)
Cl2—Re1—O6 88.98 (4) C7—C6—C8 111.1 (2)
O2—Re2—O3 85.80 (6) C5—C6—H6 108.5
O2—Re2—Re1 89.66 (4) C7—C6—H6 108.5
O3—Re2—Re1 89.97 (4) C8—C6—H6 108.5
O2—Re2—Cl3 90.11 (4) C6—C7—H7A 109.5
O3—Re2—Cl3 165.87 (4) C6—C7—H7B 109.5
Re1—Re2—Cl3 103.544 (13) H7A—C7—H7B 109.5
O2—Re2—Cl4 164.60 (4) C6—C7—H7C 109.5
O3—Re2—Cl4 87.76 (4) H7A—C7—H7C 109.5
Re1—Re2—Cl4 104.318 (15) H7B—C7—H7C 109.5
Cl3—Re2—Cl4 92.789 (18) C6—C8—H8A 109.5
O2—Re2—O5 76.03 (5) C6—C8—H8B 109.5
O3—Re2—O5 76.76 (5) H8A—C8—H8B 109.5
Re1—Re2—O5 161.00 (4) C6—C8—H8C 109.5
Cl3—Re2—O5 89.13 (4) H8A—C8—H8C 109.5
Cl4—Re2—O5 88.89 (4) H8B—C8—H8C 109.5
O5—S1—C10 104.28 (10) S1—C9—H9A 109.5
O5—S1—C9 106.08 (12) S1—C9—H9B 109.5
C10—S1—C9 97.94 (14) H9A—C9—H9B 109.5
O6—S2—C12 104.59 (11) S1—C9—H9C 109.5
O6—S2—C11 104.36 (10) H9A—C9—H9C 109.5
C12—S2—C11 98.71 (14) H9B—C9—H9C 109.5
C1—O1—Re1 119.46 (12) S1—C10—H10A 109.5
C1—O2—Re2 119.54 (12) S1—C10—H10B 109.5
C5—O3—Re2 119.74 (13) H10A—C10—H10B 109.5
C5—O4—Re1 120.10 (13) S1—C10—H10C 109.5
S1—O5—Re2 121.94 (8) H10A—C10—H10C 109.5
S2—O6—Re1 121.25 (8) H10B—C10—H10C 109.5
O1—C1—O2 121.00 (17) S2—C11—H11A 109.5
O1—C1—C2 120.20 (17) S2—C11—H11B 109.5
O2—C1—C2 118.55 (17) H11A—C11—H11B 109.5
C1—C2—C3 112.98 (18) S2—C11—H11C 109.5
C1—C2—C4 106.60 (17) H11A—C11—H11C 109.5
C3—C2—C4 111.48 (19) H11B—C11—H11C 109.5
C1—C2—H2 108.6 S2—C12—H12A 109.5
C3—C2—H2 108.6 S2—C12—H12B 109.5
C4—C2—H2 108.6 H12A—C12—H12B 109.5
C2—C3—H3A 109.5 S2—C12—H12C 109.5
C2—C3—H3B 109.5 H12A—C12—H12C 109.5
H3A—C3—H3B 109.5 H12B—C12—H12C 109.5

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C11—H11B···O2i 0.98 2.40 3.324 (3) 156
C6—H6···Cl3ii 1.00 2.73 3.519 (2) 136
C12—H12A···Cl2iii 0.98 2.82 3.751 (3) 159
C12—H12B···Cl3i 0.98 2.82 3.760 (3) 161

Symmetry codes: (i) x−1/2, −y+1/2, z+1/2; (ii) −x+1/2, y+1/2, −z+1/2; (iii) −x−1/2, y+1/2, −z+1/2.

References

  1. Bera, J. K., Vo, T.-T., Walton, R. A. & Dunbar, K. R. (2003). Polyhedron, 22, 3009–3014.
  2. Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  3. Bruker (2008). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cotton, F. A., Murillo, C. A. & Walton, R. A. (2005). Multiple Bonds between Metal Atoms, 3rd ed., pp. 271–376. New York: Springer Science and Business Media Inc.
  5. Dimitrov, N. V. & Eastland, G. W. (1978). Current Chemotherapy, edited by W. Siegenthaler & R. Luthy, Vol. 2, pp. 1319–1321. Washington, DC: American Society for Microbiology Publishing.
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Golichenko, A. A., Domasevitch, K. V., Kytova, D. E. & Shtemenko, A. V. (2015). Acta Cryst. E71, 45–47. [DOI] [PMC free article] [PubMed]
  8. Golichenko, A. A. & Shtemenko, A. V. (2006). Russ. J. Coord. Chem. 32, 242–249.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  11. Shtemenko, N. I., Chifotides, H. T., Domasevitch, K. V., Golichenko, A. A., Babiy, S. A., Li, Z., Paramonova, K. V., Shtemenko, A. V. & Dunbar, K. R. (2013). J. Inorg. Biochem. 129, 127–134. [DOI] [PubMed]
  12. Shtemenko, N., Collery, P. & Shtemenko, A. (2007). Anticancer Res. 27, 2487–2492. [PubMed]
  13. Shtemenko, A. V., Collery, P., Shtemenko, N. I., Domasevitch, K. V., Zabitskaya, E. D. & Golichenko, A. A. (2009). Dalton Trans. pp. 5132–5136. [DOI] [PubMed]
  14. Shtemenko, A., Golichenko, A., Tretyak, S., Shtemenko, N. & Randarevich, M. (2008). Metal Ions in Biology and Medicine, Vol. 10, pp. 229–234. Paris: John Libbey Eurotext.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015017429/rz5165sup1.cif

e-71-01219-sup1.cif (3MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015017429/rz5165Isup2.hkl

e-71-01219-Isup2.hkl (1.1MB, hkl)

CCDC reference: 1425634

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES