Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1993 May 15;90(10):4626–4630. doi: 10.1073/pnas.90.10.4626

Detection and characterization of mammalian DNA polymerase beta mutants by functional complementation in Escherichia coli.

J B Sweasy 1, L A Loeb 1
PMCID: PMC46565  PMID: 8506308

Abstract

We have designed and utilized a bacterial complementation system to identify and characterize mammalian DNA polymerase beta mutants. In this complementation system, wild-type rat DNA polymerase beta replaces both the replicative and repair functions of DNA polymerase I in the Escherichia coli recA718 polA12 double mutant; our 263 DNA polymerase beta mutants replace E. coli polymerase I less efficiently or not at all. Of the 10 mutants that have been shown to contain DNA sequence alterations, 2 exhibit a split phenotype with respect to complementation of the growth defect and methylmethanesulfonate sensitivity of the double mutant; one is a null mutant. The mutants possessing a split phenotype contain amino acid residue alterations within a putative nucleotide binding site of DNA polymerase beta. This approach for the isolation and evaluation of mutants of a mammalian DNA polymerase in E. coli may ultimately lead to a better understanding of the mechanism of action of this enzyme and to precisely defining its role in vertebrate cells.

Full text

PDF
4628

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abbotts J., SenGupta D. N., Zmudzka B., Widen S. G., Notario V., Wilson S. H. Expression of human DNA polymerase beta in Escherichia coli and characterization of the recombinant enzyme. Biochemistry. 1988 Feb 9;27(3):901–909. doi: 10.1021/bi00403a010. [DOI] [PubMed] [Google Scholar]
  2. Casas-Finet J. R., Kumar A., Karpel R. L., Wilson S. H. Mammalian DNA polymerase beta: characterization of a 16-kDa transdomain fragment containing the nucleic acid-binding activities of the native enzyme. Biochemistry. 1992 Oct 27;31(42):10272–10280. doi: 10.1021/bi00157a014. [DOI] [PubMed] [Google Scholar]
  3. Date T., Yamamoto S., Tanihara K., Nishimoto Y., Liu N., Matsukage A. Site-directed mutagenesis of recombinant rat DNA polymerase beta: involvement of arginine-183 in primer recognition. Biochemistry. 1990 May 29;29(21):5027–5034. doi: 10.1021/bi00473a005. [DOI] [PubMed] [Google Scholar]
  4. Date T., Yamamoto S., Tanihara K., Nishimoto Y., Matsukage A. Aspartic acid residues at positions 190 and 192 of rat DNA polymerase beta are involved in primer binding. Biochemistry. 1991 May 28;30(21):5286–5292. doi: 10.1021/bi00235a023. [DOI] [PubMed] [Google Scholar]
  5. Diaz J. J., Rhoads D. D., Roufa D. J. PCR-mediated chemical mutagenesis of cloned duplex DNAs. Biotechniques. 1991 Aug;11(2):204-6, 208, 210-1. [PubMed] [Google Scholar]
  6. Evans R. K., Beach C. M., Coleman M. S. Photoaffinity labeling of terminal deoxynucleotidyl transferase. 2. Identification of peptides in the nucleotide binding domain. Biochemistry. 1989 Jan 24;28(2):713–720. doi: 10.1021/bi00428a045. [DOI] [PubMed] [Google Scholar]
  7. Grindley N. D., Kelley W. S. Effects of different alleles of the E. coli K12 pol A gene on the replication of non-transferring plasmids. Mol Gen Genet. 1976 Feb 2;143(3):311–318. doi: 10.1007/BF00269409. [DOI] [PubMed] [Google Scholar]
  8. Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol. 1983 Jun 5;166(4):557–580. doi: 10.1016/s0022-2836(83)80284-8. [DOI] [PubMed] [Google Scholar]
  9. Jenkins T. M., Saxena J. K., Kumar A., Wilson S. H., Ackerman E. J. DNA polymerase beta and DNA synthesis in Xenopus oocytes and in a nuclear extract. Science. 1992 Oct 16;258(5081):475–478. doi: 10.1126/science.1411545. [DOI] [PubMed] [Google Scholar]
  10. KJELDGAARD N. O., MAALOE O., SCHAECHTER M. The transition between different physiological states during balanced growth of Salmonella typhimurium. J Gen Microbiol. 1958 Dec;19(3):607–616. doi: 10.1099/00221287-19-3-607. [DOI] [PubMed] [Google Scholar]
  11. Liu P. K., Goudreau B., Hsu G. S. Aphidicolin hypersensitive mutant of Chinese hamster V79 fibroblasts that underproduces DNA polymerase-alpha antigen. Somat Cell Mol Genet. 1989 Jul;15(4):331–344. doi: 10.1007/BF01534972. [DOI] [PubMed] [Google Scholar]
  12. Murakami Y., Yasuda H., Miyazawa H., Hanaoka F., Yamada M. Characterization of a temperature-sensitive mutant of mouse FM3A cells defective in DNA replication. Proc Natl Acad Sci U S A. 1985 Mar;82(6):1761–1765. doi: 10.1073/pnas.82.6.1761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Polesky A. H., Steitz T. A., Grindley N. D., Joyce C. M. Identification of residues critical for the polymerase activity of the Klenow fragment of DNA polymerase I from Escherichia coli. J Biol Chem. 1990 Aug 25;265(24):14579–14591. [PubMed] [Google Scholar]
  14. Recupero A. J., Rein D. C., Meyer R. R. Structure-function analysis of DNA polymerase-beta using monoclonal antibodies: identification of a putative nucleotide binding domain. Biochemistry. 1992 Sep 1;31(34):7989–7997. doi: 10.1021/bi00149a033. [DOI] [PubMed] [Google Scholar]
  15. Spanos A., Sedgwick S. G., Yarranton G. T., Hübscher U., Banks G. R. Detection of the catalytic activities of DNA polymerases and their associated exonucleases following SDS-polyacrylamide gel electrophoresis. Nucleic Acids Res. 1981 Apr 24;9(8):1825–1839. doi: 10.1093/nar/9.8.1825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sweasy J. B., Loeb L. A. Mammalian DNA polymerase beta can substitute for DNA polymerase I during DNA replication in Escherichia coli. J Biol Chem. 1992 Jan 25;267(3):1407–1410. [PubMed] [Google Scholar]
  17. Takeshita S., Sato M., Toba M., Masahashi W., Hashimoto-Gotoh T. High-copy-number and low-copy-number plasmid vectors for lacZ alpha-complementation and chloramphenicol- or kanamycin-resistance selection. Gene. 1987;61(1):63–74. doi: 10.1016/0378-1119(87)90365-9. [DOI] [PubMed] [Google Scholar]
  18. VOGEL H. J., BONNER D. M. Acetylornithinase of Escherichia coli: partial purification and some properties. J Biol Chem. 1956 Jan;218(1):97–106. [PubMed] [Google Scholar]
  19. Witkin E. M., Roegner-Maniscalco V. Overproduction of DnaE protein (alpha subunit of DNA polymerase III) restores viability in a conditionally inviable Escherichia coli strain deficient in DNA polymerase I. J Bacteriol. 1992 Jun;174(12):4166–4168. doi: 10.1128/jb.174.12.4166-4168.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. de Wet J. R., Fukushima H., Dewji N. N., Wilcox E., O'Brien J. S., Helinski D. R. Chromogenic immunodetection of human serum albumin and alpha-L-fucosidase clones in a human hepatoma cDNA expression library. DNA. 1984 Dec;3(6):437–447. doi: 10.1089/dna.1.1984.3.437. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES