Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1993 Jun 15;90(12):5868–5872. doi: 10.1073/pnas.90.12.5868

Crypt/villus site of substrate-dependent regulation of mouse intestinal glucose transporters.

R P Ferraris 1, J M Diamond 1
PMCID: PMC46824  PMID: 8516339

Abstract

The intestinal epithelium is in a constant state of turnover, with cells differentiating at the crypts and then migrating toward the tips of the villi. Does substrate-dependent regulation of intestinal Na+/D-glucose cotransporters occur only in crypt cells, or can transport activity be subsequently reprogrammed in mature enterocytes? We used in situ, glucose-protectable specific phlorizin binding to determine site density of brush border glucose transporters in enterocytes fractionated along the crypt/villus axis of mice that were killed shortly after drastic changes in carbohydrate levels of their diets. Dietary carbohydrate-induced changes in site density of specific phlorizin binding initially appeared only in crypt cells before spreading, over the course of several days, to the villus tips. Thus, only crypt cells perceive the signal for glucose transporter regulation, and the observed time lag of diet-induced changes in intestinal glucose uptake is due mainly to cell migration times.

Full text

PDF
5869

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cheeseman C. I., Harley B. Adaptation of glucose transport across rat enterocyte basolateral membrane in response to altered dietary carbohydrate intake. J Physiol. 1991 Jun;437:563–575. doi: 10.1113/jphysiol.1991.sp018611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cézard J. P., Broyart J. P., Cuisinier-Gleizes P., Mathieu H. Sucrase-isomaltase regulation by dietary sucrose in the rat. Gastroenterology. 1983 Jan;84(1):18–25. [PubMed] [Google Scholar]
  3. Diamond J. M., Karasov W. H., Cary C., Enders D., Yung R. Effect of dietary carbohydrate on monosaccharide uptake by mouse small intestine in vitro. J Physiol. 1984 Apr;349:419–440. doi: 10.1113/jphysiol.1984.sp015165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ferraris R. P., Diamond J. M. Use of phlorizin binding to demonstrate induction of intestinal glucose transporters. J Membr Biol. 1986;94(1):77–82. doi: 10.1007/BF01901015. [DOI] [PubMed] [Google Scholar]
  5. Ferraris R. P., Diamond J. Crypt-villus site of glucose transporter induction by dietary carbohydrate in mouse intestine. Am J Physiol. 1992 Jun;262(6 Pt 1):G1069–G1073. doi: 10.1152/ajpgi.1992.262.6.G1069. [DOI] [PubMed] [Google Scholar]
  6. Ferraris R. P., Villenas S. A., Diamond J. Regulation of brush-border enzyme activities and enterocyte migration rates in mouse small intestine. Am J Physiol. 1992 Jun;262(6 Pt 1):G1047–G1059. doi: 10.1152/ajpgi.1992.262.6.G1047. [DOI] [PubMed] [Google Scholar]
  7. Ferraris R. P., Villenas S. A., Hirayama B. A., Diamond J. Effect of diet on glucose transporter site density along the intestinal crypt-villus axis. Am J Physiol. 1992 Jun;262(6 Pt 1):G1060–G1068. doi: 10.1152/ajpgi.1992.262.6.G1060. [DOI] [PubMed] [Google Scholar]
  8. Ferraris R. P., Yasharpour S., Lloyd K. C., Mirzayan R., Diamond J. M. Luminal glucose concentrations in the gut under normal conditions. Am J Physiol. 1990 Nov;259(5 Pt 1):G822–G837. doi: 10.1152/ajpgi.1990.259.5.G822. [DOI] [PubMed] [Google Scholar]
  9. Hediger M. A., Coady M. J., Ikeda T. S., Wright E. M. Expression cloning and cDNA sequencing of the Na+/glucose co-transporter. 1987 Nov 26-Dec 2Nature. 330(6146):379–381. doi: 10.1038/330379a0. [DOI] [PubMed] [Google Scholar]
  10. Hoffman L. R., Chang E. B. Altered regulation of regional sucrase-isomaltase expression in diabetic rat intestine. Am J Physiol. 1992 Jun;262(6 Pt 1):G983–G989. doi: 10.1152/ajpgi.1992.262.6.G983. [DOI] [PubMed] [Google Scholar]
  11. Hwang E. S., Hirayama B. A., Wright E. M. Distribution of the SGLT1 Na+/glucose cotransporter and mRNA along the crypt-villus axis of rabbit small intestine. Biochem Biophys Res Commun. 1991 Dec 31;181(3):1208–1217. doi: 10.1016/0006-291x(91)92067-t. [DOI] [PubMed] [Google Scholar]
  12. Shirazi-Beechey S. P., Hirayama B. A., Wang Y., Scott D., Smith M. W., Wright E. M. Ontogenic development of lamb intestinal sodium-glucose co-transporter is regulated by diet. J Physiol. 1991 Jun;437:699–708. doi: 10.1113/jphysiol.1991.sp018620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Smith M. W., Turvey A., Freeman T. C. Appearance of phloridzin-sensitive glucose transport is not controlled at mRNA level in rabbit jejunal enterocytes. Exp Physiol. 1992 May;77(3):525–528. doi: 10.1113/expphysiol.1992.sp003616. [DOI] [PubMed] [Google Scholar]
  14. Toggenburger G., Kessler M., Semenza G. Phlorizin as a probe of the small-intestinal Na+,D-glucose cotransporter. A model. Biochim Biophys Acta. 1982 Jun 14;688(2):557–571. doi: 10.1016/0005-2736(82)90367-4. [DOI] [PubMed] [Google Scholar]
  15. Turk E., Zabel B., Mundlos S., Dyer J., Wright E. M. Glucose/galactose malabsorption caused by a defect in the Na+/glucose cotransporter. Nature. 1991 Mar 28;350(6316):354–356. doi: 10.1038/350354a0. [DOI] [PubMed] [Google Scholar]
  16. Weiser M. M. Intestinal epithelial cell surface membrane glycoprotein synthesis. I. An indicator of cellular differentiation. J Biol Chem. 1973 Apr 10;248(7):2536–2541. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES